Encoding and Decoding of LT Codes Based on Chaos

Fountain codes provide an efficient way to transfer information over erasure channels like Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, the neighours used to generate that encoding symbol are chosen uniformly at random. Practical implementations of LT codes usually realize the randomness through pseudo-randomness number generators like linear congruential method. In this paper, we apply the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. We show that the implemented LT codes based on chaos perform better than the LT codes implemented with the traditional pseudo-randomness number generator.

[1]  Angelo Vulpiani,et al.  Properties making a chaotic system a good pseudo random number generator. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[3]  Yaobin Mao,et al.  Design and FPGA Implementation of a Pseudo-Random Bit Sequence Generator Using Spatiotemporal Chaos , 2006, 2006 International Conference on Communications, Circuits and Systems.

[4]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[5]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..

[6]  Hidekatsu Tokumaru,et al.  Autocorrelations of a certain chaos , 1980 .