Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

Chalcogenide Phase-Change Materials (PCMs), such as Ge-Sb-Te alloys, are showing outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as Phase-Change Material memories or Phase-Change Random Access Memories (PCRAMs), are the most promising candidate among emerging Non-Volatile Memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large scale integration means incorporation of the phase-change material into more and more confined structures and raises material science issues to understand interface and size effects on crystallization. Other material science issues are related to the stability and ageing of the amorphous state of phase-change materials. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the phase-change material. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has hindered up-to-now the development of ultra-high multilevel storage devices. A review of the current understanding of all these issues is provided from a material science point of view.

[1]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[2]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[3]  M. Wuttig,et al.  Structural analysis of phase-change materials using X-ray absorption measurements , 2010 .

[4]  M. Wuttig,et al.  Impact of Maxwell rigidity transitions on resistance drift phenomena in GexTe1−x glasses , 2014 .

[5]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[6]  R. O. Jones,et al.  Amorphous structures of Ge/Sb/Te alloys: Density functional simulations , 2012 .

[7]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[8]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[9]  Junji Tominaga,et al.  Self‐organized van der Waals epitaxy of layered chalcogenide structures , 2015 .

[10]  J. C. Phillips,et al.  Heating through the glass transition: A rigidity approach to the boson peak , 2010 .

[11]  Matthias Wuttig,et al.  Origin of the optical contrast in phase-change materials. , 2007, Physical review letters.

[12]  H.-S. Philip Wong,et al.  Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride , 2010 .

[13]  A. V. Kolobov,et al.  Ferroelectric Order Control of the Dirac‐Semimetal Phase in GeTe‐Sb2Te3 Superlattices , 2014 .

[14]  Matthias Wuttig,et al.  Mechanical stresses upon crystallization in phase change materials , 2001 .

[15]  Yuji Sutou,et al.  Origin of the unusual reflectance and density contrasts in the phase-change material Cu2GeTe3 , 2013 .

[16]  Cheol Seong Hwang,et al.  Cyclic PECVD of Ge2Sb2Te5 Films Using Metallorganic Sources , 2007 .

[17]  A. Ogura,et al.  Ge2Sb2Te5 Film Fabrication by Tellurization of Chemical Vapor Deposited GeSb , 2013 .

[18]  R. Rosezin,et al.  High density 3D memory architecture based on the resistive switching effect , 2009 .

[19]  Nicolas Bernier,et al.  Impact of interfaces on scenario of crystallization of phase change materials , 2016 .

[20]  S. Elliott,et al.  Ab Initio computer simulation of the early stages of crystallization: application to Ge(2)Sb(2)Te(5) phase-change materials. , 2011, Physical review letters.

[21]  Kenichi Nishiuchi,et al.  High Speed Overwritable Phase Change Optical Disk Material , 1987 .

[22]  Marco Bernasconi,et al.  Breakdown of Stokes–Einstein relation in the supercooled liquid state of phase change materials , 2012, 1207.7269.

[23]  Stephen R. Elliott,et al.  Computer‐simulation design of new phase‐change memory materials , 2010 .

[24]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[25]  S. Ziegler,et al.  Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5 , 2004 .

[26]  T. Kenny,et al.  CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators , 2014, Scientific Reports.

[27]  Erik P. A. M. Bakkers,et al.  Position-controlled [100] InP nanowire arrays , 2012 .

[28]  Daniele Ielmini,et al.  Resistive switching memories based on metal oxides: mechanisms, reliability and scaling , 2016 .

[29]  Jörg Behler,et al.  Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe , 2015 .

[30]  A. Toffoli,et al.  Electrical Behavior of Phase-Change Memory Cells Based on GeTe , 2010, IEEE Electron Device Letters.

[31]  M. Ritala,et al.  In Situ Reaction Mechanism Studies on Atomic Layer Deposition of Sb2Te3 and GeTe from (Et3Si)2Te and Chlorides , 2010 .

[32]  Myong R. Kim,et al.  Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films , 1999 .

[33]  Victor G. Karpov,et al.  Field-induced nucleation in phase change memory , 2008 .

[34]  N. Yamada Origin, secret, and application of the ideal phase‐change material GeSbTe , 2012 .

[35]  M. Parrinello,et al.  Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.

[36]  S. Maitrejean,et al.  The effect of Ta interface on the crystallization of amorphous phase change material thin films , 2014 .

[37]  V. Sousa Chalcogenide materials and their application to Non-Volatile Memories , 2011 .

[38]  L. Goux,et al.  Balancing SET/RESET Pulse for $>\hbox{10}^{10}$ Endurance in $\hbox{HfO}_{2}\hbox{/Hf}$ 1T1R Bipolar RRAM , 2012, IEEE Transactions on Electron Devices.

[39]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[40]  Tanaka,et al.  Structural phase transitions in chalcogenide glasses. , 1989, Physical review. B, Condensed matter.

[41]  Y. Saito,et al.  Crystallization and electrical characteristics of Ge1Cu2Te3 films for phase change random access memory , 2012 .

[42]  S.Y. Lee,et al.  Process technologies for the integration of high density phase change RAM , 2005, 2005 International Conference on Integrated Circuit Design and Technology, 2005. ICICDT 2005..

[43]  Lada V. Yashina,et al.  X-ray photoelectron studies of clean and oxidized α-GeTe(111) surfaces , 2008 .

[44]  S. Raoux Phase Change Materials , 2009 .

[45]  C. Wen,et al.  Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording , 2005 .

[46]  Metal-Organic Chemical Vapor Deposition (MOCVD) of GeSbTe-based Chalcogenide Thin Films , 2007 .

[47]  Dae Hong Ko,et al.  TEM Study on Volume Changes and Void Formation in Ge2Sb2Te5 Films, with Repeated Phase Changes , 2010 .

[48]  H. Wong,et al.  Analysis of Temperature in Phase Change Memory Scaling , 2007, IEEE Electron Device Letters.

[49]  A. Giussani,et al.  Structural change upon annealing of amorphous GeSbTe grown on Si(111) , 2014 .

[50]  Zhitang Song,et al.  The synthesis, characterization and DFT calculations of highly volatile aminogermylene precursors and thin film investigation for CVD/ALD technology , 2015 .

[51]  L. Goux,et al.  Intrinsic Tailing of Resistive States Distributions in Amorphous HfOx and TaOx Based Resistive Random Access Memories , 2015, IEEE Electron Device Letters.

[52]  Y. Ha,et al.  Observation of molecular nitrogen in N-doped Ge2Sb2Te5 , 2006 .

[53]  C. Cagli,et al.  Investigation of Cycle-to-Cycle Variability in HfO2-Based OxRAM , 2016, IEEE Electron Device Letters.

[54]  G. Naumis,et al.  Boson peak as a consequence of rigidity: A perturbation theory approach , 2011 .

[55]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[56]  Double Optical Phase Transition of GeSbTe Thin Films Sandwiched between Two SiN Layers , 1998 .

[57]  Matthias Wuttig,et al.  Design Rules for Phase‐Change Materials in Data Storage Applications , 2011, Advanced materials.

[58]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[59]  Robert E. Simpson,et al.  A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation , 2015, Scientific Reports.

[60]  Stress buildup during crystallization of thin chalcogenide films for memory applications: In situ combination of synchrotron X-Ray diffraction and wafer curvature measurements , 2016 .

[61]  Local structure of nitrogen in N-doped amorphous and crystalline GeTe , 2012 .

[62]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[63]  D. Ielmini,et al.  Bipolar switching in chalcogenide phase change memory , 2016, Scientific Reports.

[64]  M. Anantram,et al.  Low-bias electron transport properties of germanium telluride ultrathin films , 2013, 1302.1941.

[65]  A. Roule,et al.  Effect of carbon doping on the structure of amorphous GeTe phase change material , 2011 .

[66]  G. Reimbold,et al.  Carbon-doped GeTe: A promising material for Phase-Change Memories , 2011 .

[67]  A. V. Kolobov,et al.  Ge L3-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge2Sb2Te5 , 2014 .

[68]  H. Horii,et al.  Investigation of crystallization behaviors of nitrogen-doped Ge2Sb2Te5 films by thermomechanical characteristics , 2009 .

[69]  S. Maitrejean,et al.  Vibrational properties and stabilization mechanism of the amorphous phase of doped GeTe , 2013 .

[70]  R. O. Jones,et al.  Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study , 2012 .

[71]  Martin Salinga,et al.  Role of activation energy in resistance drift of amorphous phase change materials , 2014, Front. Phys..

[72]  Kumar Virwani,et al.  Phase transitions in Ge-Sb phase change materials , 2009 .

[73]  R. O. Jones,et al.  Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge 2 Sb 2 Te 5 , 2009 .

[74]  Andrea L. Lacaita,et al.  Unified mechanisms for structural relaxation and crystallization in phase-change memory devices , 2009 .

[75]  Byung Joon Choi,et al.  Influence of the Kinetic Adsorption Process on the Atomic Layer Deposition Process of (GeTe2)(1–x)(Sb2Te3)x Layers Using Ge4+–Alkoxide Precursors , 2014 .

[76]  Yoshihisa Fujisaki,et al.  Current Status of Nonvolatile Semiconductor Memory Technology , 2010 .

[77]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[78]  Simone Raoux,et al.  Crystallization properties of ultrathin phase change films , 2008 .

[79]  Matthias Wuttig,et al.  Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage , 2003 .

[80]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[81]  M. Longo,et al.  Modern chemical synthesis methods towards low-dimensional phase change structures in the Ge-Sb-Te material system , 2015 .

[82]  Matthew J. Breitwisch,et al.  Phase Change Random Access Memory Integration , 2009 .

[83]  Daniel Krebs,et al.  Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells , 2016 .

[84]  M. Wuttig,et al.  Crystallization kinetics of Ge4Sb1Te5 films , 2002 .

[85]  Ming-Jinn Tsai,et al.  Enhanced Thermal Efficiency in Phase-Change Memory Cell by Double GST Thermally Confined Structure , 2007, IEEE Electron Device Letters.

[86]  M. Otooni Science and technology of rapid solidification and processing , 1995 .

[87]  Nitrogen contribution to N-doped GeTe (N: 8.4 at.%) in the structural phase transition , 2011 .

[88]  Yeonwoong Jung,et al.  Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices , 2010 .

[89]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[90]  S. Raoux,et al.  Density change upon crystallization of Ga-Sb films , 2014 .

[91]  R. Shelby,et al.  Phase change materials and their application to random access memory technology , 2008 .

[92]  G. Reimbold,et al.  Carbon-doped GeTe Phase-Change Memory featuring remarkable RESET current reduction , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[93]  J. Gaspard,et al.  Amorphous structure and electronic properties of the Ge1Sb2Te4 phase change material , 2010 .

[94]  Laurent Dellmann,et al.  Changes in electrical transport and density of states of phase change materials upon resistance drift , 2014 .

[95]  S. Jo,et al.  3D-stackable crossbar resistive memory based on Field Assisted Superlinear Threshold (FAST) selector , 2014, 2014 IEEE International Electron Devices Meeting.

[96]  Michele Parrinello,et al.  Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials. , 2010, Physical review letters.

[97]  Weijie Wang,et al.  Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials , 2012, Scientific Reports.

[98]  Norikazu Ohshima,et al.  Crystallization of germanium–antimony–tellurium amorphous thin film sandwiched between various dielectric protective films , 1996 .

[99]  R. Berthier,et al.  In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy , 2017 .

[100]  M. Anantram,et al.  Subthreshold Electron Transport Properties of Ultrascaled Phase Change Memory , 2014, IEEE Electron Device Letters.

[101]  Songlin Feng,et al.  Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon , 2015, Nanoscale Research Letters.

[102]  S. Raoux,et al.  Phase transitions in Ga–Sb phase change alloys , 2012 .

[103]  Junhua Wang,et al.  An advanced double-layer combined windings transverse flux system for thin strip induction heating , 2011 .

[104]  R. O. Jones,et al.  Polymorphism in phase-change materials: melt-quenched and as-deposited amorphous structures in Ge 2 Sb 2 Te 5 from density functional calculations , 2011 .

[105]  A. Lacaita,et al.  The race of phase change memories to nanoscale storage and applications , 2013 .

[106]  A. Pirovano,et al.  Non-volatile memory technologies: emerging concepts and new materials , 2004 .

[107]  R. O. Jones,et al.  Binary alloys of Ge and Te: order, voids, and the eutectic composition. , 2008, Physical review letters.

[108]  P. Fantini,et al.  Disorder enhancement due to structural relaxation in amorphous Ge2Sb2Te5 , 2012 .

[109]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[110]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[111]  Matthias Wuttig,et al.  Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5 , 1999 .

[112]  Mikko Heikkilä,et al.  Atomic layer deposition of Ge2Sb2Te5 thin films , 2009 .

[113]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[114]  A. Toffoli,et al.  Material engineering of GexTe100−x compounds to improve phase-change memory performances , 2013 .

[115]  Michele Parrinello,et al.  Erratum: Signature of Tetrahedral Ge in the Raman Spectrum of Amorphous Phase-Change Materials [Phys. Rev. Lett. 104, 085503 (2010)] , 2011 .

[116]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[117]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[118]  M. Ritala,et al.  Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium. , 2009, Journal of the American Chemical Society.

[119]  Yoshiyuki Kageyama,et al.  Completely Erasable Phase Change Optical Disk , 1992 .

[120]  Andrea L. Lacaita,et al.  Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5 , 2008 .

[121]  Hideki Horii,et al.  A microscopic model for resistance drift in amorphous Ge2Sb2Te5 , 2011 .

[122]  Richard Dronskowski,et al.  Bonding nature of local structural motifs in amorphous GeTe. , 2014, Angewandte Chemie.

[123]  C. Cabral,et al.  Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress , 2007 .

[124]  John Robertson,et al.  Modeling of switching mechanism in GeSbTe chalcogenide superlattices , 2015, Scientific Reports.

[125]  R. Fallica,et al.  Growth study of GexSbyTez deposited by MOCVD under nitrogen for non-volatile memory applications , 2008 .

[126]  Alessandro Curioni,et al.  Structural origin of resistance drift in amorphous GeTe , 2016 .

[127]  Sylvain Maitrejean,et al.  Impact of Oxidation on Ge2Sb2Te5 and GeTe Phase-Change Properties , 2012 .

[128]  H. Wong,et al.  Crystallization times of Ge–Te phase change materials as a function of composition , 2009 .

[129]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[130]  F. Aussenac,et al.  High temperature reliability of μtrench Phase-Change Memory devices , 2012, Microelectron. Reliab..

[131]  Matthias Wuttig,et al.  Aging mechanisms in amorphous phase-change materials , 2015, Nature Communications.

[132]  Xiang‐Yang Liu Heterogeneous nucleation or homogeneous nucleation , 2000 .

[133]  Simone Raoux,et al.  Crystallization dynamics of nitrogen-doped Ge2Sb2Te5 , 2009 .

[134]  Matthias Wuttig,et al.  How fragility makes phase-change data storage robust: insights from ab initio simulations , 2014, Scientific Reports.

[135]  Jin Hwan Jeong,et al.  Study of Ge–Sb–Te and Ge–Te cocktail sources to improve an efficiency of multi-line CVD for phase change memory , 2015 .

[136]  U. Köster Surface crystallization of metallic glasses , 1988 .

[137]  Plasma Enhanced Chemical Vapor Deposition of Conformal GeTe Layer for Phase Change Memory Applications , 2012 .

[138]  J. Tominaga,et al.  Selective detection of tetrahedral units in amorphous GeTe-based phase change alloys using Ge L3-edge x-ray absorption near-edge structure spectroscopy , 2013 .

[139]  E. Rimini,et al.  Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements , 2004 .

[140]  C. Mitterer,et al.  High-temperature residual stresses in thin films characterized by x-ray diffraction substrate curvature method. , 2007, The Review of scientific instruments.

[141]  M. P. Anantram,et al.  A multi-scale analysis of the crystallization of amorphous germanium telluride using ab initio simulations and classical crystallization theory , 2014 .

[142]  Yuji Mori,et al.  Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase , 2000 .

[143]  J. Robertson,et al.  Bonding origin of optical contrast in phase-change memory materials , 2010 .

[144]  T. Chong,et al.  Crystallization-induced stress in thin phase change films of different thicknesses , 2008 .

[145]  Felix R. L. Lange,et al.  Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices , 2016, Scientific Reports.

[146]  M. Hong,et al.  Anomalous phase change characteristics in Fe-Te materials , 2012 .

[147]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[148]  Xiaoqian Wei,et al.  Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 Films and Its Effect on Devices , 2007 .

[149]  Phase-Change Memory Properties of Electrodeposited Ge-Sb-Te Thin Film , 2015, Nanoscale Research Letters.

[150]  S. Lombardo,et al.  Amorphous to fcc-polycrystal transition in Ge2Sb2Te5 thin films studied by electrical measurements: Data analysis and comparison with direct microscopy observations , 2009 .

[151]  Min-Gon Kim,et al.  Ge nitride formation in N-doped amorphous Ge2Sb2Te5 , 2007 .

[152]  Byung Joon Choi,et al.  Conformal Formation of (GeTe2)(1–x)(Sb2Te3)x Layers by Atomic Layer Deposition for Nanoscale Phase Change Memories , 2012 .

[153]  Zhitang Song,et al.  Stress reduction and performance improvement of phase change memory cell by using Ge2Sb2Te5-TaOx composite films , 2011 .

[154]  R. Kim,et al.  Layer‐by‐Layer Growth of GeSbTe Thin Films by Metal‐Organic CVD for Phase Change Memory Applications , 2009 .

[155]  D. Macfarlane,et al.  Surface crystallization of ZBLAN glasses , 1992 .

[156]  M. Micoulaut,et al.  Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity , 2009, 0909.5080.

[157]  David G. Cahill,et al.  Low thermal conductivity in Ge2Sb2Te5–SiOx for phase change memory devices , 2009 .

[158]  Daniel W. Hewak,et al.  Fragile‐to‐Strong Crossover in Supercooled Liquid Ag‐In‐Sb‐Te Studied by Ultrafast Calorimetry , 2015 .

[159]  T Uruga,et al.  Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5). , 2010, Nano letters.

[160]  Sylvain Maitrejean,et al.  Crystallization of Ge2Sb2Te5 nanometric phase change material clusters made by gas-phase condensation , 2012 .

[161]  F. Rao,et al.  High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application , 2014 .

[162]  Elisabetta Palumbo,et al.  Overcoming Temperature Limitations in Phase Change Memories With Optimized ${\rm Ge}_{\rm x}{\rm Sb}_{\rm y}{\rm Te}_{\rm z}$ , 2013, IEEE Transactions on Electron Devices.

[163]  B. DeSalvo,et al.  Resistive memory variability: A simplified trap-assisted tunneling model , 2016 .

[164]  M. Wuttig,et al.  Stoichiometry dependence of resistance drift phenomena in amorphous GeSnTe phase-change alloys , 2013 .

[165]  Jan Siegel,et al.  Hot-wire chemical vapor deposition of chalcogenide materials for phase change memory applications , 2008 .

[166]  P Jost,et al.  Disorder-induced localization in crystalline phase-change materials. , 2011, Nature materials.

[167]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[168]  Seungjun Kim,et al.  Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition. , 2015, ACS nano.

[169]  S. Han,et al.  Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory , 2008 .

[170]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[171]  Y. Maeda,et al.  Ge K-Edge Extended X-Ray Absorption Fine Structure Study of the Local Structure of Amorphous GeTe and the Crystallization , 1991 .

[172]  Marcel A. Verheijen,et al.  Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb₂Te₃ superlattices. , 2015, Nanoscale.

[173]  Daeil Kim,et al.  GeSbTe deposition for the PRAM application , 2007 .

[174]  A. Pirovano,et al.  Chemical vapor deposition of chalcogenide materials for phase-change memories , 2008 .

[175]  F. d’Acapito,et al.  Polymorphism of Amorphous Ge2Sb2Te5 Probed by EXAFS and Raman Spectroscopy , 2011 .

[176]  D. Ielmini,et al.  Role of mechanical stress in the resistance drift of Ge2Sb2Te5 films and phase change memories , 2011 .

[177]  Evangelos Eleftheriou,et al.  Projected phase-change memory devices , 2015, Nature Communications.

[178]  H. Hwang,et al.  Excellent Selector Characteristics of Nanoscale $ \hbox{VO}_{2}$ for High-Density Bipolar ReRAM Applications , 2011, IEEE Electron Device Letters.