WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI
暂无分享,去创建一个
[1] Harold T. Hodes. Logicism and the Ontological Commitments of Arithmetic , 1984 .
[2] B. Russell. Mathematical Logic as Based on the Theory of Types , 1908 .
[3] José Ferreirós Domínguez. Labyrinth of thought: a history of set theory and its role in modern mathematics , 2007 .
[4] On the significance of the Burali-Forti paradox , 2011 .
[5] John P. Burgess,et al. E Pluribus Unum: Plural Logic and Set Theory , 2004 .
[6] G. Leibniz,et al. Philosophical papers and letters. , 2011 .
[7] Fernando Ferreira,et al. Amending Frege’s Grundgesetze der Arithmetik , 2005, Synthese.
[8] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[9] C. Burali-Forti. Una questione sui numeri transfiniti , 1897 .
[10] Øystein Linnebo,et al. Predicative fragments of Frege Arithmetic , 2004, Bull. Symb. Log..
[11] Richard G. Heck Jnr. The Consistency of predicative fragments of frege’s grundgesetze der arithmetik , 1996 .
[12] Hermann Grassmann. Die Lineale Ausdehnungslehre ein neuer Zweig der Mathematik: Zweiter Abschnitt. Die Elementargrösse , 1844 .
[13] Stewart Shapiro,et al. New V, ZF, and Abstraction , 1999 .
[14] Sean Christopher Ebels Duggan. The Nuisance Principle in Infinite Settings , 2015 .
[15] Richard Pettigrew,et al. Two types of abstraction for structuralism , 2014 .
[16] Charles Parsons. Sets and Classes , 1974 .
[17] Paolo Mancosu. Grundlagen, Section 64: Frege's Discussion of Definitions by Abstraction in Historical Context , 2015 .
[18] Gabriel Uzquiano. Plural Quantification and Classes , 2003 .
[19] Bertrand Russell. SOME EXPLANATIONS IN REPLY TO MR. BRADLEY , 1910 .
[20] Øystein Linnebo,et al. Pluralities and sets , 2010 .
[21] S. Shapiro. All sets great and small: and I do mean ALL , 2003 .
[22] E B B A Philip Jourdain,et al. VII. On the transfinite cardinal numbers of well-ordered aggregates , 1904 .
[23] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[24] Logical objects and the paradox of Burali-Forti , 1986 .
[25] Florio,et al. What Russell Should Have Said to Burali - , 2016 .
[26] Graham Hoare,et al. Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics , 1999, The Mathematical Gazette.
[27] Fernando Ferreira,et al. On the Consistency of the Δ11-CA Fragment of Frege's Grundgesetze , 2002, J. Philos. Log..
[28] Gregory H. Moore,et al. Burali-Forti's paradox: A reappraisal of its origins , 1981 .
[29] Michael Glanzberg,et al. Quantification and Realism , 2004 .
[30] Crispin Wright,et al. Is Hume's Principle Analytic? , 1999, Notre Dame J. Formal Log..
[31] Stewart Shapiro,et al. All Things Indefinitely Extensible , 2006 .
[32] Charles D. Parsons,et al. The liar paradox , 1974, J. Philos. Log..
[33] Roy T. Cook. Iteration One More Time , 2003, Notre Dame J. Formal Log..
[34] Sean Walsh,et al. RELATIVE CATEGORICITY AND ABSTRACTION PRINCIPLES , 2014, The Review of Symbolic Logic.
[35] E. Zermelo. Über Grenzzahlen und Mengenbereiche , 1930 .