Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations

The thermal rectification in nanotubes with a mass gradient is studied by reverse non-equilibrium molecular dynamics simulations. We predict a preferred heat flow from light to heavy atoms which differs from the preferential direction in one-dimensional monoatomic systems. This behavior of nanotubes is explained by anharmonicities caused by transverse motions which are stronger at the low-mass end. The present simulations show an enhanced rectification with increasing tube length, diameter and mass gradient. Implications of the present findings for applied topics are mentioned concisely.

[1]  Baowen Li,et al.  Thermal rectification and negative differential thermal resistance in lattices with mass gradient , 2007, 0707.0977.

[2]  Michael C. Böhm,et al.  The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations , 2009, Nanotechnology.

[3]  E. Haller,et al.  Isotope effect in the thermal conductivity of germanium single crystals , 1996 .

[4]  Daniel Bougeard,et al.  Inelastic neutron scattering spectra of zeolite frameworks – experiment and modeling , 2001 .

[5]  T. R. Anthony,et al.  Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. , 1992, Physical review letters.

[6]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[7]  T. R. Anthony,et al.  THE THERMAL CONDUCTIVITY OF ISOTOPICALLY ENRICHED POLYCRYSTALLINE DIAMOND FILMS , 1991 .

[8]  A. Majumdar,et al.  Isotope effect on the thermal conductivity of boron nitride nanotubes. , 2006, Physical review letters.

[9]  Florian Müller-Plathe,et al.  YASP: A molecular simulation package , 1993 .

[10]  Baowen Li,et al.  Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations , 2007, 0707.4241.

[11]  M. Böhm,et al.  Peculiarities in the quantum statistics of π electron systems , 1997 .

[12]  Florian Müller-Plathe,et al.  Parallelizing a Molecular Dynamics Algorithm on a Multiprocessor Workstation Using OpenMP , 2005, J. Chem. Inf. Model..

[13]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[14]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[15]  Florian Müller-Plathe,et al.  Reverse Non-equilibrium Molecular Dynamics , 2004 .

[16]  M. Böhm,et al.  New aspects in the theory of ? electron systems on the basis of quantum statistical considerations , 1998 .

[17]  Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. , 2004, Chaos.

[18]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[19]  Nuo Yang,et al.  Carbon nanocone: A promising thermal rectifier , 2008 .