Formulation of a new explicit tidal scheme in revised LICOM2.0

Abstract. Tides play an important role in ocean energy transfer and mixing, and provide major energy for maintaining thermohaline circulation. This study proposes a new explicit tidal scheme and assesses its performance in a global ocean model. Instead of using empirical specifications of tidal amplitudes and frequencies, the new scheme directly uses the positions of the moon and sun in a global ocean model to incorporate tides. Compared with the traditional method that has specified tidal constituents, the new scheme can better simulate the diurnal and spatial characteristics of the tidal potential of spring and neap tides as well as the spatial patterns and magnitudes of major tidal constituents (K1 and M2). It significantly reduces the total errors of eight tidal constituents (with the exception of N2 and Q1) in the traditional explicit tidal scheme, in which the total errors of K1 and M2 are reduced by 21.85 % and 32.13 %, respectively. Relative to the control simulation without tides, both the new and traditional tidal schemes can lead to better dynamic sea level (DSL) simulation in the North Atlantic, reducing significant negative biases in this region. The new tidal scheme also shows smaller positive bias than the traditional scheme in the Southern Ocean. The new scheme is suited to calculate regional distributions of sea level height in addition to tidal mixing.

[1]  Minghua Zhang,et al.  CAS-ESM2.0 Model Datasets for the CMIP6 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) , 2021, Advances in Atmospheric Sciences.

[2]  Xiaohong Liu,et al.  Description and Climate Simulation Performance of CAS‐ESM Version 2 , 2020, Journal of Advances in Modeling Earth Systems.

[3]  Minghua Zhang,et al.  CAS-ESM2.0 Model Datasets for the CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1) , 2020, Advances in Atmospheric Sciences.

[4]  S. Peng,et al.  Impact of Tidal Mixing on Water Mass Transformation and Circulation in the South China Sea , 2017 .

[5]  Minghua Zhang,et al.  Formulation of a new ocean salinity boundary condition and impact on the simulated climate of an oceanic general circulation model , 2017, Science China Earth Sciences.

[6]  Patrick Heimbach,et al.  OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project , 2016 .

[7]  Hailong Liu,et al.  The influence of explicit tidal forcing in a climate ocean circulation model , 2016, Acta Oceanologica Sinica.

[8]  P. Woodworth,et al.  Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes , 2014 .

[9]  H. Tsujino,et al.  A practical scheme to introduce explicit tidal forcing into an OGCM , 2013 .

[10]  J. MacKinnon Oceanography: Mountain waves in the deep ocean , 2013, Nature.

[11]  R. Hallberg,et al.  Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing , 2013 .

[12]  Kevin E. Trenberth,et al.  Climate Data Guide Spurs Discovery and Understanding , 2013 .

[13]  Alistair Adcroft,et al.  Formulating the Equations of Ocean Models , 2013 .

[14]  A. Wallcraft,et al.  An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model , 2012 .

[15]  Pengfei Lin,et al.  The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 , 2012, Acta Meteorologica Sinica.

[16]  Richard J. Greatbatch,et al.  Physical processes that impact the evolution of global mean sea level in ocean climate models , 2012 .

[17]  E. Joseph Metzger,et al.  Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model , 2010 .

[18]  Malte Müller,et al.  The effect of ocean tides on a climate model simulation , 2010 .

[19]  A. Willmott,et al.  The effect of tides on dense water formation in Arctic shelf seas , 2009 .

[20]  R. Fiedler,et al.  Explicit tidal forcing in an ocean general circulation model , 2007 .

[21]  W. Merryfield,et al.  On the effect of topographically enhanced mixing on the Global Ocean circulation , 2005 .

[22]  Carl Wunsch,et al.  VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS , 2004 .

[23]  S. Griffies,et al.  A Technical Guide to MOM4 , 2004 .

[24]  A. Schiller Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region , 2004 .

[25]  Stephen G. Yeager,et al.  Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies , 2004 .

[26]  R. Ray,et al.  Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry , 2003 .

[27]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[28]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[29]  L. St. Laurent,et al.  Estimating tidally driven mixing in the deep ocean , 2002 .

[30]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[31]  Zeng Qing-cun The interface waves of thermocline excited by the principal tidal constituents in the Bohai Sea , 2002 .

[32]  Jürgen Sündermann,et al.  Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation , 2001 .

[33]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[34]  C. Provost,et al.  An Analysis of the Tidal Signal in the WOCE Sea Level Dataset , 2001 .

[35]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[36]  R. Huang,et al.  Mixing and Energetics of the Oceanic Thermohaline Circulation , 1999 .

[37]  M. Endoh,et al.  A free surface general circulation model for the tropical Pacific Ocean , 1992 .

[38]  D. Webb,et al.  The Development of a Free-Surface Bryan–Cox–Semtner Ocean Model , 1991 .

[39]  Liang Xinzhong,et al.  A numerical world ocean general circulation model , 1989 .

[40]  Y. Han A numerical world ocean general circulation model. Part II. A baroclinic experiment , 1984 .

[41]  J. Wahr,et al.  A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free ‘core nutation’ , 1981 .

[42]  E. W. Schwiderski,et al.  On charting global ocean tides , 1980 .

[43]  M. Hendershott,et al.  The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .