A generative modeling approach for benchmarking and training shallow quantum circuits

Hybrid quantum-classical algorithms provide ways to use noisy intermediate-scale quantum computers for practical applications. Expanding the portfolio of such techniques, we propose a quantum circuit learning algorithm that can be used to assist the characterization of quantum devices and to train shallow circuits for generative tasks. The procedure leverages quantum hardware capabilities to its fullest extent by using native gates and their qubit connectivity. We demonstrate that our approach can learn an optimal preparation of the Greenberger-Horne-Zeilinger states, also known as “cat states”. We further demonstrate that our approach can efficiently prepare approximate representations of coherent thermal states, wave functions that encode Boltzmann probabilities in their amplitudes. Finally, complementing proposals to characterize the power or usefulness of near-term quantum devices, such as IBM’s quantum volume, we provide a new hardware-independent metric called the qBAS score. It is based on the performance yield in a specific sampling task on one of the canonical machine learning data sets known as Bars and Stripes. We show how entanglement is a key ingredient in encoding the patterns of this data set; an ideal benchmark for testing hardware starting at four qubits and up. We provide experimental results and evaluation of this metric to probe the trade off between several architectural circuit designs and circuit depths on an ion-trap quantum computer.

[1]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[2]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[3]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[4]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[5]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[6]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[7]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[8]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[9]  Ashish Kapoor,et al.  Quantum deep learning , 2014, Quantum Inf. Comput..

[10]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[11]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[12]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[13]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[14]  José David Martín-Guerrero,et al.  Quantum autoencoders via quantum adders with genetic algorithms , 2017, Quantum Science and Technology.

[15]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.

[16]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[17]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[18]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[19]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[20]  Jun Wang,et al.  Unsupervised Generative Modeling Using Matrix Product States , 2017, Physical Review X.

[21]  Alejandro Perdomo-Ortiz,et al.  Robust implementation of generative modeling with parametrized quantum circuits , 2019, Quantum Machine Intelligence.

[22]  N. Wiebe,et al.  Tomography and generative training with quantum Boltzmann machines , 2016, 1612.05204.

[23]  Zhengyu Zhang,et al.  An efficient quantum algorithm for generative machine learning , 2017, ArXiv.

[24]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[25]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[26]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[27]  M. Benedetti,et al.  Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.

[28]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[29]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[30]  L. Lamata,et al.  Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience , 2016, 1611.07851.

[31]  Peter Wittek,et al.  Quantum Enhanced Inference in Markov Logic Networks , 2016, Scientific Reports.

[32]  Peter L. McMahon,et al.  Decoherence of up to 8-qubit entangled states in a 16-qubit superconducting quantum processor , 2019, Quantum Science and Technology.

[33]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[34]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[35]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[36]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[37]  Kathleen E. Hamilton,et al.  Generative model benchmarks for superconducting qubits , 2018, Physical Review A.

[38]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[39]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[40]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[41]  I. Mastromatteo On the typical properties of inverse problems in statistical mechanics , 2013, 1311.0190.

[42]  Dacheng Tao,et al.  The Expressive Power of Parameterized Quantum Circuits , 2018, ArXiv.

[43]  Lei Wang,et al.  Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.

[44]  Jing Chen,et al.  Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines , 2017, Entropy.

[45]  March,et al.  Quantum Volume , 2017 .

[46]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[47]  Lester James V. Miranda,et al.  PySwarms: a research toolkit for Particle Swarm Optimization in Python , 2018, J. Open Source Softw..

[48]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[49]  Xiaodi Wu,et al.  Exponential Quantum Speed-ups for Semidefinite Programming with Applications to Quantum Learning , 2017, ArXiv.

[50]  Dmitri Maslov,et al.  Use of global interactions in efficient quantum circuit constructions , 2017, ArXiv.

[51]  L-M Duan,et al.  A quantum machine learning algorithm based on generative models , 2018, Science Advances.

[52]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[53]  Alejandro Perdomo-Ortiz,et al.  Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices , 2017, ArXiv.

[54]  F. Ricci-Tersenghi The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods , 2011, 1112.4814.

[55]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[56]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[57]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[58]  Rupak Biswas,et al.  Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers , 2017, Quantum Science and Technology.

[59]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[60]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[61]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[62]  M. Lewenstein,et al.  Machine learning by unitary tensor network of hierarchical tree structure , 2017, New Journal of Physics.

[63]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[64]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[65]  Masoud Mohseni,et al.  Commercialize quantum technologies in five years , 2017, Nature.

[66]  David J. Schwab,et al.  Supervised Learning with Quantum-Inspired Tensor Networks , 2016, ArXiv.

[67]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[68]  Simone Severini,et al.  Experimental learning of quantum states , 2017, Science Advances.

[69]  Peter J. Bickel,et al.  The Earth Mover's distance is the Mallows distance: some insights from statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.