GGA + U modeling of structural, electronic, and magnetic properties of iron porphyrin-type molecules

An ab initio computational study of various iron porphyrin-type molecules has been performed. Our ab initio calculations are based on the density functional theory (DFT) and have been conducted usi ...

[1]  Mikael P. Johansson,et al.  Change in electron and spin density upon electron transfer to haem. , 2002, Biochimica et biophysica acta.

[2]  H. Steinrück,et al.  Direct synthesis of a metalloporphyrin complex on a surface. , 2006, Journal of the American Chemical Society.

[3]  K. W. Hipps,et al.  Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor. , 2001, Journal of the American Chemical Society.

[4]  Meng-Sheng Liao,et al.  Assessment of the performance of density‐functional methods for calculations on iron porphyrins and related compounds , 2006, J. Comput. Chem..

[5]  Shiyoshi Yokoyama,et al.  Selective assembly on a surface of supramolecular aggregates with controlled size and shape , 2001, Nature.

[6]  Abhik Ghosh,et al.  High-level ab initio calculations on the energetics of low-lying spin states of biologically relevant transition metal complexes: a first progress report. , 2003, Current opinion in chemical biology.

[7]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[8]  Ruiqin Q. Zhang,et al.  Effective simulation of biological systems: Choice of density functional and basis set for heme-containing complexes , 2007 .

[9]  Michel Dupuis,et al.  Characterization of electronic structure and properties of a Bis(histidine) heme model complex. , 2003, Journal of the American Chemical Society.

[10]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[11]  M. Perutz,et al.  The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. , 1984, Journal of molecular biology.

[12]  C. Reed,et al.  Nuclear magnetic resonance investigation of magnetic and electronic properties of "intermediate spin" ferrous porphyrin complexes. , 1977, Journal of the American Chemical Society.

[13]  F. Walker,et al.  Substituent Effects on the Choice of the Orbital Preferred for Electron Spin Delocalization in Two Paramagnetic Low-Spin Iron(III) Porphyrins: Mapping the Spin Density Distribution at the Pyrrole Positions by 1H COSY and NOESY Techniques , 1994 .

[14]  M. Boillot,et al.  Ligand-driven light-induced spin change (LD-LISC): A promising photomagnetic effect , 2004 .

[15]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[16]  H. Rein Iron Porphyrins. Part 3. , 1990 .

[17]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[18]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.

[19]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[20]  Mikael P. Johansson,et al.  Spin and charge distribution in iron porphyrin models: a coupled cluster and density-functional study. , 2004, The Journal of chemical physics.

[21]  Peter R. Taylor,et al.  Ab initio multiconfiguration reference perturbation theory calculations on the energetics of low-energy spin states of iron(III) porphyrins , 2003, JBIC Journal of Biological Inorganic Chemistry.

[22]  Steiner,et al.  Quasiparticle properties of Fe, Co, and Ni. , 1992, Physical review. B, Condensed matter.

[23]  J. Mispelter,et al.  Proton magnetic resonance characterization of the intermediate (S=1) spin state of ferrous porphyrins , 1980 .

[24]  D. Scherlis,et al.  Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods , 2002 .

[25]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[26]  Mikael P. Johansson,et al.  The spin distribution in low-spin iron porphyrins. , 2002, Journal of the American Chemical Society.

[27]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[28]  Density functional theory and DFT+U study of transition metal porphines adsorbed on Au(111) surfaces and effects of applied electric fields. , 2006, Journal of the American Chemical Society.

[29]  Michele Parrinello,et al.  Equilibrium Geometries and Electronic Structure of Iron−Porphyrin Complexes: A Density Functional Study , 1997 .

[30]  C. Reed,et al.  Mössbauer effect study of the magnetic properties of S=1 ferrous tetraphenylporphyrin , 1978 .

[31]  J. Watts,et al.  Effects of peripheral substituents and axial ligands on the electronic structure and properties of cobalt porphyrins. , 2005, The journal of physical chemistry. A.

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  C. P. Taylor,et al.  The EPR of low spin heme complexes. Relation of the t2g hole model to the directional properties of the g tensor, and a new method for calculating the ligand field parameters. , 1977, Biochimica et biophysica acta.

[34]  Abhik Ghosh,et al.  "True" iron(V) and iron(VI) porphyrins: a first theoretical exploration. , 2002, Journal of the American Chemical Society.

[35]  R. Knuechel,et al.  Combined chemotherapeutic and photodynamic treatment on human bladder cells by hematoporphyrin-platinum(II) conjugates. , 2004, Cancer letters.

[36]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[37]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[38]  B. Mcgarvey Survey of ligand field parameters of strong field d5 complexes obtained from the g matrix , 1998 .

[39]  Thomas G. Spiro,et al.  Low-Lying Spin States of Iron(II) Porphine , 1998 .

[40]  S. Scheiner,et al.  Electronic structure and bonding in unligated and ligated FeII porphyrins , 2002 .

[41]  Teizo Kitagawa,et al.  The resonance Raman spectra of intermediate-spin ferrous porphyrin , 1979 .

[42]  H Wende,et al.  Substrate-induced magnetic ordering and switching of iron porphyrin molecules. , 2007, Nature materials.

[43]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[44]  P. Boyd,et al.  Paramagnetic anisotropy, average magnetic susceptibility, and electronic structure of intermediate-spin S = 1 (5,10,15,20-tetraphenylporphyrin)iron(II) , 1979 .

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[47]  T. Straatsma,et al.  Multiplet splittings and other properties from density functional theory: an assessment in iron–porphyrin systems , 2005 .

[48]  G. Kresse,et al.  Structural and electronic properties of rhodium surfaces: an ab initio approach , 1996 .

[49]  C. Reed,et al.  Synthesis, stereochemistry, and structure-related properties of alpha, beta, gamma, delta-tetraphenylporphinatoiron(II). , 1975, Journal of the American Chemical Society.

[50]  A. Roth,et al.  Electronic configuration assignment and the importance of low-lying excited states in high-spin imidazole-ligated iron(II) porphyrinates. , 2005, Journal of the American Chemical Society.

[51]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .