On least squares estimation for long-memory lattice processes

A flexible class of anisotropic stationary lattice processes with long memory can be defined in terms of a two-way fractional ARIMA (FARIMA) representation. We consider parameter estimation based on minimizing an approximate residual sum of squares. The method can be applied to sampling areas that are not necessarily rectangular. A central limit theorem is derived under general conditions. The method is illustrated by an analysis of satellite data consisting of total column ozone amounts in Europe and the Atlantic respectively.

[1]  V. Anh,et al.  ESTIMATION OF SPATIAL ARMA MODELS , 1992 .

[2]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[3]  R. J. Martin The use of time-series models and methods in the analysis of agricultural field trials , 1990 .

[4]  Offer Lieberman Penalised maximum likelihood estimation for fractional Gaussian processes , 2001 .

[5]  P. Whittle,et al.  Topographic correlation, power-law covariance functions, and diffusion , 1962 .

[6]  Harold Auradou,et al.  Anisotropic self-affine properties of experimental fracture surfaces , 2006 .

[7]  Eric Moulines,et al.  A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .

[8]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[9]  Chae Young Lim,et al.  Local Whittle estimator for anisotropic random fields , 2009, J. Multivar. Anal..

[10]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[11]  X. Guyon Parameter estimation for a stationary process on a d-dimensional lattice , 1982 .

[12]  J. R. M. Hosking,et al.  FRACTIONAL DIFFERENCING MODELING IN HYDROLOGY , 1985 .

[13]  Estimation of intrinsic processes affected by additive fractal noise , 2006 .

[14]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[15]  Kanti V. Mardia,et al.  Spectral and circulant approximations to the likelihood for stationary Gaussian random fields , 1996 .

[16]  José M. Angulo,et al.  Estimation and filtering of fractional generalised random fields , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[17]  G. Katul,et al.  Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy , 2006 .

[18]  W. Palma Long-Memory Time Series: Theory and Methods , 2007 .

[19]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[20]  Laura Mayoral,et al.  Minimum Distance Estimation of Stationary and Non-Stationary ARFIMA Processes , 2007 .

[21]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[22]  R. J. Bhansali,et al.  On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes , 1998 .

[23]  F. Lavancier,et al.  Long memory random fields , 2006 .

[24]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .

[25]  Eric Moulines,et al.  Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context , 2007 .

[26]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[27]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[28]  José M. Angulo,et al.  Fractional-order regularization and wavelet approximation to the inverse estimation problem for random fields , 2003 .

[29]  O. Barndorff-Nielsen,et al.  A note on the tail accuracy of the univariate saddlepoint approximation , 1992 .

[30]  Ziauddin Ahmad,et al.  Spectral properties of backscattered UV radiation in cloudy atmospheres , 2004 .

[31]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[32]  R. Dahlhaus,et al.  Edge effects and efficient parameter estimation for stationary random fields , 1987 .

[33]  R. J. Martin A subclass of lattice processes applied to a problem in planar sampling , 1979 .

[34]  Victor Solo,et al.  Intrinsic random functions and the paradox of l/f noise , 1992 .

[35]  M. Kelbert,et al.  Fractional random fields associated with stochastic fractional heat equations , 2005, Advances in Applied Probability.

[36]  M. Bartlett The statistical analysis of spatial pattern , 1974, Advances in Applied Probability.

[37]  P. Robinson Time Series with Long Memory , 2003 .

[38]  L. Giraitis Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory , 2002 .

[39]  P. Robinson,et al.  Modified whittle estimation of multilateral models on a lattice , 2006 .

[40]  D. Tjøstheim Statistical spatial series modelling II: Some further results on unilateral lattice processes , 1983, Advances in Applied Probability.

[41]  Schwartz,et al.  Method for generating long-range correlations for large systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Peter J. Brockwell,et al.  Gaussian maximum likelihood estimation for ARMA models II: Spatial processes , 2006 .

[43]  Peter J. Diggle A spatial stochastic model of inter-plant competition , 1976 .

[44]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[45]  José M. Angulo,et al.  Possible long-range dependence in fractional random fields , 1999 .

[46]  C.-C. Jay Kuo,et al.  Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Haar basis , 1993, IEEE Trans. Signal Process..

[47]  Andrew J. Majda,et al.  Monte Carlo methods for turbulent tracers with long range and fractal random velocity fields. , 1997, Chaos.

[48]  F. Diebold,et al.  On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean , 1994 .

[49]  Dionissios T. Hristopulos,et al.  New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity , 2002 .

[50]  Noel A Cressie,et al.  A spatial model for multivariate lattice data , 2007 .

[51]  Murray Rosenblatt,et al.  Gaussian and Non-Gaussian Linear Time Series and Random Fields , 1999 .

[52]  Robert J. D. Spurr,et al.  Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations , 2008 .

[53]  Rangasami L. Kashyap,et al.  Characterization and estimation of two-dimensional ARMA models , 1984, IEEE Trans. Inf. Theory.

[54]  Claudia Klüppelberg,et al.  Densities with Gaussian Tails , 1993 .

[55]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[56]  A. Wood,et al.  Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields , 2004, math/0406525.

[57]  I. Basawa,et al.  Maximum likelihood estimation for a fractionally differenced autoregressive model on a two-dimensional lattice , 1995 .

[58]  Invariance principles for non-isotropic long memory random fields , 2007 .

[59]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[60]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[61]  B. B. Bhattacharyya,et al.  Parameter estimates for fractional autoregressive spatial processes , 2005, math/0501423.

[62]  Xavier Guyon,et al.  Random fields on a network , 1995 .

[63]  Matthew Roughan,et al.  Real-time estimation of the parameters of long-range dependence , 2000, TNET.

[64]  C. Heyde Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence , 1993 .

[65]  SMALL-SAMPLE LIKELIHOOD-BASED INFERENCE IN THE ARFIMA MODEL , 2000, Econometric Theory.

[66]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[67]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[68]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[69]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[70]  Jeremy P. Smith,et al.  Comparing the bias and misspecification in ARFIMA models , 1997 .

[71]  A. Walden,et al.  Wavelet Analysis and Synthesis of Stationary Long-Memory Processes , 1996 .