Optimization of ICRH for core impurity control in JET-ILW

Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.

C. Giroud | C. D. Challis | E. Joffrin | Vaclav Petrzilka | F. G. Rimini | M. Nocente | C. Noble | M. Reich | G. Gorini | L. Meneses | J. Hobirk | L. Colas | P. Mantica | D. Van Eester | Jet Contributors | Jan Mlynar | M. Baruzzo | S. Brezinsek | Kristel Crombé | A. Czarnecka | Ph. Jacquet | Yevgen O. Kazakov | A. Krivska | M. F. F. Nave | G. Petravich | A. Shaw | M. Valisa | J. Ongena | I. Monakhov | Marc Goniche | J. P. Graves | Thomas Johnson | M. Lennholm | R. J. Dumont | V. G. Kiptily | M. Tardocchi | E. Lerche | M. Tsalas | C. Angioni | M. F. Stamp | Nicolas Fedorczak | G. Sips | P. Monier-Garbet | Jacob Eriksson | M-L Mayoral | M. Brix | M. Santala | C. F. Maggi | C. Giroud | E. Joffrin | V. Bobkov | J. Hobirk | N. Fedorczak | M. Lennholm | M. Reich | C. Maggi | C. Angioni | S. Brezinsek | C. Challis | P. Mantica | M. Mayoral | F. Rimini | E. Solano | P. Lomas | L. Colas | R. Dumont | M. Goniche | J. Ongena | V. Kiptily | G. Sips | M. Nave | Y. Kazakov | A. Czarnecka | M. Nocente | M. Tardocchi | G. Gorini | M. Brix | M. Valisa | M. Tsalas | M. Stamp | P. Monier-Garbet | M. Baruzzo | J. Eriksson | J. Graves | F. Casson | E. Lerche | T. Blackman | K. Crombé | M. Graham | P. Jacquet | A. Křivská | L. Meneses | I. Monakhov | C. Noble | G. Petravich | V. Petržílka | M. Santala | A. Shaw | P. J. Lomas | I. Nunes | Volodymyr Bobkov | Emilia R. Solano | Th. Pütterich | T. Blackman | M. E. Graham | F. J. Casson | G. Mathews | D. Van Eester | T. Johnson | I. Nunes | T. Pütterich | J. Mlynar | G. Mathews

[1]  D. V. Eester,et al.  Studies of RF sheaths and diagnostics on IShTAR , 2015 .

[2]  J. Contributors,et al.  Impact of localized gas injection on ICRF coupling and SOL parameters in JET-ILW H-mode plasmas , 2015 .

[3]  J. Contributors,et al.  Tungsten transport and sources control in JET ITER-like wall H-mode plasmas , 2015 .

[4]  J. Contributors,et al.  The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas , 2015 .

[5]  M. Beurskens,et al.  Progress at JET in integrating ITER-relevant core and edge plasmas within the constraints of an ITER-like wall , 2015 .

[6]  G. Pucella,et al.  Improved confinement in JET high β plasmas with an ITER-like wall , 2015, 1501.03929.

[7]  G. Pucella,et al.  Improved Confinement in JET High Beta Plasmas with an ITER-Like Wall , 2015 .

[8]  S. Brezinsek,et al.  Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER , 2015 .

[9]  C. Angioni,et al.  Neoclassical transport of heavy impurities with poloidally asymmetric density distribution in tokamaks , 2014 .

[10]  J. Contributors,et al.  Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling , 2014 .

[11]  J. Contributors,et al.  Theoretical description of heavy impurity transport and its application to the modelling of tungsten in JET and ASDEX upgrade , 2014, 1407.1191.

[12]  Modelling the influence of temperature anisotropies on poloidal asymmetries of density in the core of rotating plasmas , 2014 .

[13]  Daniele Milanesio,et al.  Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall , 2014 .

[14]  J. Contributors,et al.  Spectroscopic investigation of heavy impurity behaviour during ICRH with the JET ITER-like wall , 2014 .

[15]  L. Colas,et al.  Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling , 2014 .

[16]  Jean-Marie Noterdaeme,et al.  Influence of gas injection location and magnetic perturbations on ICRF antenna performance in ASDEX Upgrade , 2014 .

[17]  I. T. Chapman,et al.  Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall , 2014 .

[18]  Heavy Impurity Transport in the Core of JET Plasmas , 2014 .

[19]  A. Sips,et al.  Compatibility of High Performance Operation with JET ILW , 2014 .

[20]  J. Vega,et al.  The influence of an ITER-like wall on disruptions at JET , 2013 .

[21]  J. Contributors,et al.  Impact of minority concentration on fundamental (H)D ICRF heating performance in JET-ILW , 2013 .

[22]  Y Liu,et al.  Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall , 2013, 1310.8433.

[23]  F Durodie,et al.  Design and operations of a load-tolerant external conjugate-T matching system for the A2 ICRH antennas at JET , 2013, 1309.4644.

[24]  R. Neu,et al.  ICRF specific plasma wall interactions in JET with the ITER-like wall , 2013 .

[25]  Jet Efda Contributors,et al.  RF sheath-enhanced beryllium sources at JET’s ICRH antennas , 2013 .

[26]  F Jenko,et al.  Nonlinear stabilization of tokamak microturbulence by fast ions. , 2013, Physical review letters.

[27]  R. Maggiora,et al.  Evaluation of the influence of the main plasma density parameters on antenna coupling and radio frequency potentials with TOPICA code , 2013 .

[28]  Julien Hillairet,et al.  Self consistent radio-frequency wave propagation and peripheral direct current plasma biasing: Simplified three dimensional non-linear treatment in the 'wide sheath' asymptotic regime , 2012 .

[29]  Jet Efda Contributors,et al.  Physics and engineering results obtained with the ion cyclotron range of frequencies ITER-like antenna on JET , 2012 .

[30]  J. Contributors,et al.  Impurity production from the ion cyclotron resonance heating antennas in JET , 2012 .

[31]  Jet Efda Contributors,et al.  Implementation of load resilient ion cyclotron resonant frequency (ICRF) systems to couple high levels of ICRF power to ELMy H-mode plasmas in JET , 2012 .

[32]  T. Tala,et al.  Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating , 2012 .

[33]  A. Scarabosio,et al.  Improvement of ICRF antenna loading by local gas injection on ASDEX Upgrade , 2012 .

[34]  A. Hubbard,et al.  Poloidal variation of high-Z impurity density due to hydrogen minority ion cyclotron resonance heating on Alcator C-Mod , 2012 .

[35]  R. Felton,et al.  Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments , 2011 .

[36]  Z. Vizvary,et al.  Heat loads on JET plasma facing components from ICRF and LH wave absorption in the SOL , 2011 .

[37]  Simple 1D Fokker–Planck modelling of ion cyclotron resonance frequency heating at arbitrary cyclotron harmonics accounting for Coulomb relaxation on non-Maxwellian populations , 2011 .

[38]  J. Contributors,et al.  Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection , 2011 .

[39]  R. Weynants ICRF Review: From ERASMUS To ITER , 2009 .

[40]  J. Contributors,et al.  RF‐sheath heat flux estimates on Tore Supra and JET ICRF antennae. Extrapolation to ITER , 2009 .

[41]  R. Neu,et al.  Interaction of ICRF fields with the plasma boundary in AUG and JET and guidelines for antenna optimization , 2009 .

[42]  J. Contributors,et al.  Recent experiments on alternative dipole phasing with the JET A2 ICRF antennas , 2009 .

[43]  L. Berry,et al.  Far-field sheaths due to fast waves incident on material boundaries , 2008 .

[44]  Jet Efda Contributors,et al.  Improved break-in-slope analysis of the plasma energy response in tokamaks , 2008 .

[45]  Y. R. Martin,et al.  Plasma wall interaction and its implication in an all tungsten divertor tokamak , 2007 .

[46]  D. A. D’Ippolito,et al.  A radio-frequency sheath boundary condition and its effect on slow wave propagation , 2006 .

[47]  R. Budny,et al.  Role of sawtooth in avoiding impurity accumulation and maintaining good confinement in JET radiative mantle discharges , 2003 .

[48]  D. V. Eester,et al.  A variational principle for studying fast-wave mode conversion , 1998 .

[49]  J. Wesson Poloidal distribution of impurities in a rotating tokamak plasma , 1997 .

[50]  E Kallne,et al.  Observations of toroidal plasma rotation induced by ICRH in JET , 1992 .

[51]  F. W. Perkins,et al.  Radiofrequency sheaths and impurity generation by ICRF antennas , 1989 .

[52]  Charles F. F. Karney Fokker-Planck and Quasilinear Codes , 1986, physics/0501066.

[53]  S. Hirshman,et al.  Neoclassical transport of impurities in tokamak plasmas , 1981 .

[54]  T. H. Stix Fast-wave heating of a two-component plasma , 1975 .