North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions

[1] Sp and Ps converted seismic waves at 93 permanent seismic stations are used to image upper mantle velocity discontinuities across the contiguous United States and portions of southeast Canada and northwest Mexico. Receiver functions are calculated with frequency-domain deconvolution and migrated with 1D models that account for variations in crustal structure and mantle velocities between stations. Strong positive Ps phases from the Moho are observed and agree well with previous crustal thickness estimates. In the tectonically active western U.S., high amplitude, negative Sp phases are interpreted as the lithosphere-asthenosphere boundary (LAB) at depths of 51–104 km. These phases indicate a large and rapid LAB velocity gradient and are consistent with an anomalously hot asthenosphere that is rich in water or contains partial melt. In the regions of the Phanerozoic southern and eastern U.S where Sp phases are interpretable as the LAB, the discontinuity lies at depths of 75–111 km and is also too sharp to be explained by temperature alone. In contrast, no Sp phases are observed at depths comparable to the base of the thick high velocity lithosphere that lies beneath cratonic North America and certain portions of the Phanerozoic eastern U.S. At these stations, negative Sp phases occur at depths of 59–113 km and are interpreted as the top of a low velocity zone internal to the lithosphere. The absence of an observable LAB discontinuity in regions of thick lithosphere indicates that the LAB velocity gradient is distributed over more than 50–70 km in depth and is consistent with a purely thermal boundary.

[1]  L. P. Vinnik,et al.  Detection of waves converted from P to SV in the mantle , 1977 .

[2]  P. Morgan,et al.  Chapter 23: Heat flow and thermal regimes in the continental United States , 1989 .

[3]  H. Thybo The heterogeneous upper mantle low velocity zone , 2006 .

[4]  Robert B. Smith,et al.  Dynamic elevation of the Cordillera, western United States , 2000 .

[5]  G. Nolet,et al.  Upper mantle S velocity structure of North America , 1997 .

[6]  K. Fischer,et al.  A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America , 2005, Nature.

[7]  E. Humphreys,et al.  Post-Laramide removal of the Farallon slab, western United States , 1995 .

[8]  R. Kind,et al.  Imaging the colliding Indian and Asian lithospheric plates beneath Tibet , 2006 .

[9]  Cin-Ty A. Lee Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle , 2003 .

[10]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[11]  Mian Liu,et al.  Lithospheric velocity structure of the New Madrid Seismic Zone: A joint teleseismic and local P tomographic study , 2009 .

[12]  Charles J. Ammon,et al.  The isolation of receiver effects from teleseismic P waveforms , 1991, Bulletin of the Seismological Society of America.

[13]  N. Chatterjee,et al.  The influence of H2O on mantle wedge melting , 2006 .

[14]  B. Kennett,et al.  The removal of free surface interactions from three-component seismograms , 1991 .

[15]  Barbara Romanowicz,et al.  Comparison of global waveform inversions with and without considering cross-branch modal coupling , 1995 .

[16]  M. Weber,et al.  Deep origin of the Hawaiian tilted plume conduit derived from receiver functions , 2006 .

[17]  T. Murase,et al.  The use of laboratory velocity data for estimating temperature and partial melt fraction in the low‐velocity zone: Comparison with heat flow and electrical conductivity studies , 1989 .

[18]  K. Priestley,et al.  The thermal structure of the lithosphere from shear wave velocities , 2006 .

[19]  T. Jordan Structure and Formation of the Continental Tectosphere , 1988 .

[20]  P. Kelemen,et al.  Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs , 2006 .

[21]  T. Grove,et al.  The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models , 2008 .

[22]  Daniel E. McNamara,et al.  Azimuthal shear wave velocity anisotropy in the Basin and Range Province using moho Ps converted phases , 1993 .

[23]  E. Engdahl,et al.  A new global model for P wave speed variations in Earth's mantle , 2008 .

[24]  K. Karlstrom,et al.  Persistent influence of Proterozoic accretionary boundaries in the tectonic evolution of southwestern North America Interaction of cratonic grain and mantle modification events , 1998 .

[25]  V. Farra,et al.  Lehmann discontinuity beneath North America: No role for seismic anisotropy , 2005 .

[26]  M. Wysession,et al.  Crust and upper mantle discontinuity structure beneath eastern North America , 2002 .

[27]  Alan G. Jones,et al.  The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons , 2009 .

[28]  C. Lesher,et al.  Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite , 2006 .

[29]  Peter M. Shearer,et al.  Characterization of global seismograms using an automatic-picking algorithm , 1994, Bulletin of the Seismological Society of America.

[30]  M. Weber,et al.  Thickness of the lithosphere east of the Dead Sea Transform , 2006 .

[31]  Stability and dynamics of the continental tectosphere , 1999 .

[32]  Ramesh Desikan,et al.  Receiver function analysis of the North American crust and upper mantle , 2002 .

[33]  K. Fleming,et al.  The lithosphere–asthenosphere boundary in the North-West Atlantic region , 2005 .

[34]  Jeffrey Park,et al.  Shear zones in the Proterozoic lithosphere of the Arabian shield and the nature of the Hales discontinuity , 2000 .

[35]  H. Oda,et al.  Receiver Functions of Seismic Waves in Layered Anisotropic Media: Application to the Estimate of Seismic Anisotropy , 2008 .

[36]  James L. Davis,et al.  Continuous GPS measurements of contemporary deformation across the Northern Basin and Range Province , 1998 .

[37]  M. Kumar,et al.  Lithospheric and upper mantle structure of the Indian Shield, from teleseismic receiver functions , 2000 .

[38]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[39]  Jiuhui Chen,et al.  Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions , 2006 .

[40]  B. Romanowicz,et al.  Lithospheric layering in the North American craton , 2010, Nature.

[41]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[42]  G. Wittlinger,et al.  Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton , 2007 .

[43]  J. Ritsema,et al.  African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. , 2000, Science.

[44]  R. Snieder,et al.  Thermal and compositional anomalies beneath the North American continent , 2003 .

[45]  M. Wysession,et al.  Crustal structure beneath the Florida‐to‐Edmonton broadband seismometer array , 2009 .

[46]  V. Farra,et al.  Upper mantle stratification by P and S receiver functions , 2000 .

[47]  M. Kumar,et al.  The rapid drift of the Indian tectonic plate , 2007, Nature.

[48]  Rongjiang Wang,et al.  The S receiver functions: synthetics and data example , 2006 .

[49]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  W. Peltier,et al.  Rheological stratification of the lithosphere: A direct inference based upon the geodetically observed pattern of the glacial isostatic adjustment of the North American continent , 2008 .

[51]  Thomas H. Jordan,et al.  Composition and development of the continental tectosphere , 1978, Nature.

[52]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[53]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[54]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[55]  P. Shearer,et al.  Scattered wave imaging of the lithosphere–asthenosphere boundary , 2010 .

[56]  D. Snyder Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities , 2008 .

[57]  A. Dziewoński,et al.  Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America , 2008 .

[58]  P. Dirks,et al.  Low-Velocity Zone Structure Beneath the Kaapvaal Craton From S-wave Receiver Functions , 2008 .

[59]  R. Kind,et al.  Deep structure of the Afro‐Arabian hotspot by S receiver functions , 2004 .

[60]  D. Blackwell,et al.  Heat flow patterns of the North American continent: A discussion of the DNAG Geothermal Map of North America , 1990 .

[61]  W. Mooney,et al.  Seismic Structure of the Crust and Uppermost Mantle of North America and Adjacent Oceanic Basins: A Synthesis , 2002 .

[62]  W. Hammond,et al.  Upper mantle seismic wave velocity' Effects of realistic partial melt geometries , 2000 .

[63]  E. Humphreys,et al.  Physical state of the western U.S. upper mantle , 1994 .

[64]  W. Griffin,et al.  Lithosphere mapping beneath the North American plate , 2004 .

[65]  Gary L. Pavlis,et al.  Upper Mantle Heterogeneity beneath North America from Travel Time Tomography with Global and USArray Transportable Array Data , 2008 .

[66]  G. L. Farmer,et al.  How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States , 2003 .

[67]  R. Kind,et al.  Rejuvenation of the lithosphere by the Hawaiian plume , 2003, Nature.

[68]  H. Keppler,et al.  Water Solubility in Aluminous Orthopyroxene and the Origin of Earth's Asthenosphere , 2007, Science.

[69]  Richard F. Katz,et al.  A new parameterization of hydrous mantle melting , 2003 .

[70]  I. Jackson,et al.  The seismological signature of temperature and grain size variations in the upper mantle , 2005 .

[71]  Charles A. Langston,et al.  The effect of planar dipping structure on source and receiver responses for constant ray parameter , 1977 .

[72]  H. Thybo,et al.  The Seismic 8° Discontinuity and Partial Melting in Continental Mantle , 1997, Science.

[73]  E. S. Husebye,et al.  Lithosphere thickness beneath the baltic shield , 1979 .

[74]  B. Romanowicz The Thickness of Tectonic Plates , 2009, Science.

[75]  P. H. Nixon,et al.  Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from th , 1995 .

[76]  Ling Chen,et al.  A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration , 2006 .

[77]  K. Fischer,et al.  P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America , 2007 .

[78]  A. L. Hales A seismic discontinuity in the lithosphere , 1969 .

[79]  A. Yasuda,et al.  Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa , 1994 .

[80]  N. C. Peterson,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S11 Schemes S1 to S10 Tables S1 and S2 a Global View of the Lithosphere-asthenosphere Boundary , 2022 .

[81]  S. Roecker,et al.  Lithosphere and asthenosphere of the Tien Shan imaged by S receiver functions , 2002 .

[82]  K. Priestley,et al.  Lithospheric structure of the Aegean obtained from P and S receiver functions , 2006 .

[83]  A. Lachenbruch Heat flow in the Basin and Range province and thermal effects of tectonic extension , 1978 .

[84]  P. Silver,et al.  Evidence for a compositional boundary within the lithospheric mantle beneath the Kalahari craton from S receiver functions , 2008 .

[85]  S. S. Shapiro,et al.  Stability and dynamics of the continental tectosphere , 1999 .

[86]  G. Zandt,et al.  Upper mantle discontinuity structure beneath East Anatolian Plateau (Turkey) from receiver functions , 2008 .

[87]  R. Allen,et al.  The Fate of the Juan de Fuca Plate , 2007 .

[88]  D. Angus,et al.  Constraints on the interpretation of S-to-P receiver functions , 2005 .

[89]  T. J. Owens,et al.  Active foundering of a continental arc root beneath the southern Sierra Nevada in California , 2004, Nature.

[90]  T. Jordan,et al.  Seismological structure of the upper mantle: a regional comparison of seismic layering , 1999 .

[91]  R. Carlson,et al.  Three‐dimensional seismic velocity structure of the northwestern United States , 2008 .

[92]  J. Revenaugh,et al.  The teleseismic signature of fossil subduction: Northwestern Canada , 2008 .

[93]  Ling Chen,et al.  Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration , 2009 .

[94]  J. Gerald,et al.  Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications , 2004 .

[95]  D. Yuen,et al.  The role of water in connecting past and future episodes of subduction , 2005 .

[96]  Louis Moresi,et al.  The thermal structure of stable continental lithosphere within a dynamic mantle , 2002 .

[97]  Vadim Levin,et al.  P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation , 1997 .

[98]  T. Rivers Lithotectonic elements of the Grenville Province: review and tectonic implications , 1997 .

[99]  F. Vernon,et al.  Upper mantle structure beneath the Hawaiian swell: Constraints from the ocean seismic network pilot experiment , 2002 .

[100]  F. Marone,et al.  Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data , 2007 .

[101]  Hendrik Jan van Heijst,et al.  Global transition zone tomography , 2004 .

[102]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[103]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[104]  D. Eaton,et al.  New insights into the lithosphere beneath the Superior Province from Rayleigh wave dispersion and receiver function analysis , 2007 .

[105]  R. Kind,et al.  The lithosphere–asthenosphere boundary beneath the western United States , 2006 .

[106]  R. Kind,et al.  The lithosphere‐asthenosphere boundary in the Tien Shan‐Karakoram region from S receiver functions: Evidence for continental subduction , 2005 .

[107]  S. Lee,et al.  Thermal structure of the North American uppermost mantle inferred from seismic tomography , 2002 .

[108]  W. Griffin,et al.  The composition and origin of sub-continental lithospheric mantle , 1999 .

[109]  K. Fischer,et al.  The Lithosphere- Asthenosphere Boundary , 2010 .

[110]  M. Bostock Mantle stratigraphy and evolution of the Slave province , 1998 .

[111]  M. Hirschmann,et al.  Melting in the Earth's deep upper mantle caused by carbon dioxide , 2006, Nature.

[112]  M. Bianchi,et al.  An S receiver function analysis of the lithospheric structure in South America , 2007 .

[113]  D. Forsyth,et al.  Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion , 2003 .

[114]  S. Lee High-resolution estimates of lithospheric thickness from Missouri to Massachusetts, USA , 2002 .

[115]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[116]  T. Kanazawa,et al.  Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates , 2009, Science.

[117]  A. Rodgers,et al.  Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula , 2007 .

[118]  Yasuko Takei,et al.  Effect of pore geometry on VP/VS: From equilibrium geometry to crack , 2002 .

[119]  Walter D. Mooney,et al.  Thermal thickness and evolution of Precambrian lithosphere: A global study , 2001 .

[120]  T. Murase,et al.  Qp‐melting temperature relation in peridotite at high pressure and temperature: Attenuation mechanism and implications for the mechanical properties of the upper mantle , 1989 .

[121]  K. Priestley,et al.  Mapping the Hawaiian plume conduit with converted seismic waves , 2000, Nature.

[122]  R. Cooper,et al.  The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine , 2000 .

[123]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[124]  Charles J. Ammon,et al.  Iterative deconvolution and receiver-function estimation , 1999 .

[125]  D. Helmberger,et al.  Upper mantle shear structure of North America , 1984 .

[126]  Hiroo Kanamori,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[127]  B. Romanowicz,et al.  A simple method for improving crustal corrections in waveform tomography , 2010 .

[128]  B. Wernicke,et al.  Basin and Range Extensional Tectonics Near the Latitude of Las Vegas, Nevada , 1991 .

[129]  G. Roe,et al.  EVOLUTION OF THE CONTINENTAL LITHOSPHERE , 2005 .

[130]  T. Jordan,et al.  On the state of sublithospheric upper mantle beneath a supercontinent , 2002 .