A Historical Excursus on the Statistical Validation Parameters for QSAR Models: A Clarification Concerning Metrics and Terminology

In the last years, external validation of QSAR models was the subject of intensive debate in the scientific literature. Different groups have proposed different metrics to find "the best" parameter to characterize the external predictivity of a QSAR model. This editorial summarizes the history of parameter development for the external QSAR model validation and suggests, once again, the concurrent use of several different metrics to assess the real predictive capability of QSAR models.

[1]  Paola Gramatica,et al.  QSARINS‐chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS , 2014, J. Comput. Chem..

[2]  L. Lin,et al.  A concordance correlation coefficient to evaluate reproducibility. , 1989, Biometrics.

[3]  Weida Tong,et al.  QSAR Models Using a Large Diverse Set of Estrogens , 2001, J. Chem. Inf. Comput. Sci..

[4]  Paola Gramatica,et al.  External Evaluation of QSAR Models, in Addition to Cross‐Validation: Verification of Predictive Capability on Totally New Chemicals , 2014, Molecular informatics.

[5]  Davide Ballabio,et al.  Evaluation of model predictive ability by external validation techniques , 2010 .

[6]  Paola Gramatica,et al.  QSAR Modeling is not “Push a Button and Find a Correlation”: A Case Study of Toxicity of (Benzo‐)triazoles on Algae , 2012, Molecular informatics.

[7]  Humayun Kabir,et al.  Comparative Studies on Some Metrics for External Validation of QSPR Models , 2012, J. Chem. Inf. Model..

[8]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[9]  Tudor I. Oprea,et al.  Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors , 1996, J. Comput. Aided Mol. Des..

[10]  K. Roy,et al.  Be aware of error measures. Further studies on validation of predictive QSAR models , 2016 .

[11]  Paola Gramatica,et al.  QSARINS: A new software for the development, analysis, and validation of QSAR MLR models , 2013, J. Comput. Chem..

[12]  Paola Gramatica,et al.  On the development and validation of QSAR models. , 2013, Methods in molecular biology.

[13]  Alexander Tropsha,et al.  Best Practices for QSAR Model Development, Validation, and Exploitation , 2010, Molecular informatics.

[14]  Ralph Kühne,et al.  External Validation and Prediction Employing the Predictive Squared Correlation Coefficient Test Set Activity Mean vs Training Set Activity Mean , 2008, J. Chem. Inf. Model..

[15]  Paola Gramatica,et al.  Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection , 2012, J. Chem. Inf. Model..

[16]  Roberto Todeschini,et al.  Comments on the Definition of the Q2 Parameter for QSAR Validation , 2009, J. Chem. Inf. Model..

[17]  K. Roy,et al.  On Two Novel Parameters for Validation of Predictive QSAR Models , 2009, Molecules.

[18]  L. Lin Assay Validation Using the Concordance Correlation Coefficient , 1992 .

[19]  David A. Winkler,et al.  Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models , 2015, J. Chem. Inf. Model..

[20]  Paola Gramatica,et al.  The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models , 2003 .

[21]  Paola Gramatica,et al.  Principles of QSAR models validation: internal and external , 2007 .

[22]  Kunal Roy,et al.  On some aspects of validation of predictive quantitative structure–activity relationship models , 2007, Expert opinion on drug discovery.

[23]  Paola Gramatica,et al.  Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient , 2011, J. Chem. Inf. Model..

[24]  T. Chai,et al.  Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature , 2014 .