Silver-based nanodisk codes.

We report a novel method for synthesizing silver-based nanodisk code (NDC) structures using on-wire lithography, where we employ milder synthetic and etching conditions than those used to synthesize the analogous gold structures. The silver structures exhibit stronger surface-enhanced Raman scattering signals than their Au counterparts at 633 and 532 nm excitation and, therefore, lead to lower limits of detection when used in the context of DNA-based detection assays. Finally, use of two enhancing nanostructured materials in one disk code dramatically increases the information storage density for encoding. For example, a disk code consisting of 5 gold disk pairs has 13 unique combinations of enhancing patterns, while one with 5 disk pairs that can be either gold or silver has 98.

[1]  Sang Yup Lee,et al.  Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. , 2010, Nano letters.

[2]  L. Liz‐Marzán,et al.  SERS-based diagnosis and biodetection. , 2010, Small.

[3]  Jaume Esteve,et al.  Intracellular polysilicon barcodes for cell tracking. , 2009, Small.

[4]  Mussel-inspired fabrication of encoded polymer films for electrochemical identification , 2009 .

[5]  Chad A Mirkin,et al.  On-wire lithography: synthesis, encoding and biological applications , 2009, Nature Protocols.

[6]  Hywel Morgan,et al.  Microparticle encoding technologies for high-throughput multiplexed suspension assays , 2009, Integrative biology : quantitative biosciences from nano to macro.

[7]  J. Nam,et al.  Functional nanomaterial-based amplified bio-detection strategies , 2009 .

[8]  L. Wan,et al.  Programmed fabrication of bimetallic nanobarcodes for miniature multiplexing bioanalysis. , 2009, Analytical chemistry.

[9]  Sung-Kyoung Kim,et al.  Highly encoded one-dimensional nanostructures for rapid sensing , 2009 .

[10]  G. Schatz,et al.  The effect of surface roughness on the extinction spectra and electromagnetic fields around gold nanoparticles , 2008 .

[11]  C. Mirkin,et al.  An Electrochemical Approach to and the Physical Consequences of Preparing Nanostructures from Gold Nanorods with Smooth Ends. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[12]  Chad A Mirkin,et al.  Rationally designed nanostructures for surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[13]  Mehmet Toner,et al.  Multifunctional Encoded Particles for High-Throughput Biomolecule Analysis , 2007, Science.

[14]  David G. Spiller,et al.  Encoded Microcarriers for High‐Throughput Multiplexed Detection , 2007 .

[15]  Chad A Mirkin,et al.  Nanodisk codes. , 2007, Nano letters.

[16]  Rebecca L. Stoermer,et al.  Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. , 2006, Journal of the American Chemical Society.

[17]  K. Rose,et al.  Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. , 2006, Angewandte Chemie.

[18]  Chad A. Mirkin,et al.  Designing, fabricating, and imaging Raman hot spots , 2006, Proceedings of the National Academy of Sciences.

[19]  Jennifer S. Park,et al.  Qdot nanobarcodes for multiplexed gene expression analysis. , 2006, Nano letters.

[20]  Chad A Mirkin,et al.  On-Wire Lithography , 2005, Science.

[21]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[22]  Monika Milewski,et al.  Decoding randomly ordered DNA arrays. , 2004, Genome research.

[23]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[24]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[25]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[26]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[27]  John P Nolan,et al.  Suspension array technology: evolution of the flat-array paradigm. , 2002, Trends in biotechnology.

[28]  George C. Schatz,et al.  Modeling Metal Nanoparticle Optical Properties , 2001 .

[29]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[30]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[31]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[32]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[33]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[34]  M. Moskovits,et al.  Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal particles. 1. Gold in phosphoric acid anodic aluminum oxide films , 1993 .

[35]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[36]  George E. Possin,et al.  A method for forming very small diameter wires (Notes) , 1970 .