A neural network-based distributed parameter model identification approach for microcantilever

The microcantilever used in micro–nanomanipulator is a spatially distributed and flexible mechanical system. An accurate model of the microcantilever is essential for the accurate tip positioning and force sensing. Traditional lumped parameter model will lose the spatial dynamics. Though the nominal Euler–Bernoulli model is a distributed parameter model, in practice there are still some unknown nonlinear dynamics. In this study, a neural network-based distributed parameter model identification approach is proposed for modelling the microcantilever. First, a nominal Euler–Bernoulli beam model is derived. To compensate unknown nonlinear dynamics, a nonlinear term that needs to be estimated is added in the nominal model. For finite-dimensional implementation, the infinite-dimensional partial differential equation model is reduced into a finite-dimensional ordinary differential equation model using the Galerkin method. Next, a neural network-based intelligent learning approach is developed to learn the unknown nonlinearities from the input–output data. A radial basis function recurrent neural network observer is designed to estimate the finite-dimensional states from a few sensors of measurements. After that, a general regression neural network model is identified to establish the nonlinear spatiotemporal dynamic model between the inputs and outputs. The effectiveness of the proposed neural network-based distributed parameter modelling approach is verified by the simulations on a typical microcantilever.

[1]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[2]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[3]  Andrew A. Goldenberg,et al.  Development of a systematic methodology of fuzzy logic modeling , 1998, IEEE Trans. Fuzzy Syst..

[4]  F. Mendels,et al.  Dynamic properties of AFM cantilevers and the calibration of their spring constants , 2006 .

[5]  Philippe Lutz,et al.  Interval force/position modeling and control of a microgripper composed of two collaborative piezoelectric actuators and its automation , 2014 .

[6]  Stephen A. Billings,et al.  State-Space Reconstruction and Spatio-Temporal Prediction of Lattice Dynamical Systems , 2007, IEEE Transactions on Automatic Control.

[7]  Javier Contreras,et al.  Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors , 2010, Sensors.

[8]  Aidin Delnavaz,et al.  Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: Theory and experiment , 2009 .

[9]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[10]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[11]  Reza Saeidpourazar,et al.  Towards Microcantilever-based Force Sensing and Manipulation: Modeling, Control Development and Implementation , 2009, Int. J. Robotics Res..

[12]  Paramasivan Saratchandran,et al.  Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction , 2006, Fuzzy Sets Syst..

[13]  M. Napoli,et al.  A novel sensing scheme for the displacement of electrostatically actuated microcantilevers , 2005, Proceedings of the 2005, American Control Conference, 2005..

[14]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[15]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[16]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[17]  R. Stark,et al.  Transfer Function Analysis of the Micro Cantilever Used in Atomic Force Microscopy , 2006, IEEE Transactions on Nanotechnology.

[18]  Darren M. Dawson,et al.  Distributed-Parameters Base Modeling and Vibration Analysis of Micro-Cantilevers Used in Atomic Force Microscopy , 2003 .

[19]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[20]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[21]  Martin P. Seah,et al.  The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis , 2005 .

[22]  Ah Chung Tsoi,et al.  Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results , 1998, Neural Networks.

[23]  Dierk Schröder,et al.  Intelligent modeling, observation, and control for nonlinear systems , 2001 .

[24]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[25]  Liang Wang,et al.  Complex systems modeling via fuzzy logic , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[26]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[27]  James J. Carroll,et al.  Approximation of nonlinear systems with radial basis function neural networks , 2001, IEEE Trans. Neural Networks.

[28]  Philippe Lutz,et al.  Optimal Design of Piezoelectric Cantilevered Actuators With Guaranteed Performances by Using Interval Techniques , 2014, IEEE/ASME Transactions on Mechatronics.

[29]  Reza Saeidpourazar,et al.  Nano-robotic manipulation using a RRP nanomanipulator: Part B - Robust control of manipulator's tip using fused visual servoing and force sensor feedbacks , 2008, Appl. Math. Comput..

[30]  Andreas Stemmer,et al.  Estimating the transfer function of the cantilever in atomic force microscopy: A system identification approach , 2005 .

[31]  Guanrong Chen,et al.  Spectral-approximation-based intelligent modeling for distributed thermal processes , 2005, IEEE Transactions on Control Systems Technology.

[32]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[33]  D. Schroder Intelligent modelling, observation and control for nonlinear systems , 2000, 6th International Workshop on Advanced Motion Control. Proceedings (Cat. No.00TH8494).

[34]  Parlitz,et al.  Prediction of spatiotemporal time series based on reconstructed local states , 2000, Physical review letters.

[35]  A Farshidianfar,et al.  A more comprehensive modeling of atomic force microscope cantilever. , 2008, Ultramicroscopy.

[36]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[37]  Philippe Lutz,et al.  Modelling and H∞ force control of a nonlinear piezoelectric cantilever , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Stephen A. Billings,et al.  Identification of finite dimensional models of infinite dimensional dynamical systems , 2002, Autom..

[39]  Nader Jalili,et al.  Adaptive trajectory control of microcantilever's tip utilised in atomic force microscopy-based manipulation , 2011, Int. J. Control.

[40]  Reza Saeidpourazar,et al.  Microcantilever-Based Force Tracking With Applications to High-Resolution Imaging and Nanomanipulation , 2008, IEEE Transactions on Industrial Electronics.