On 20 years of Lophotrochozoa

Lophotrochozoa is a protostome clade that includes disparate animals such as molluscs, annelids, bryozoans, and flatworms, giving it the distinction of including the most body plans of any of the three major clades of Bilateria. This extreme morphological disparity has prompted numerous conflicting phylogenetic hypotheses about relationships among lophotrochozoan phyla. Here, I review the current understanding of lophotrochozoan phylogeny with emphasis on recent insights gained through approaches taking advantage of high-throughput DNA sequencing (phylogenomics). Of significance, Platyzoa, a hypothesized clade of mostly small-bodied animals, appears to be an artifact of long-branch attraction. Recent studies recovered Gnathifera (Syndermata, Gnathostomulida, and Micrognathozoa) sister to all other lophotrochozoans and a clade called Rouphozoa (Platyhelminthes and Gastrotricha) sister to the remaining non-gnathiferan lophotrochozoans. Although Bryozoa was traditionally grouped with Brachiopoda and Phoronida (Lophophorata), most molecular studies have supported a clade including Entoprocta, Cycliophora, and Bryozoa (Polyzoa). However, recent phylogenomic work has shown that entoprocts and bryozoans have compositionally heterogeneous genomes that may cause systematic artifacts affecting their phylogenetic placement. Lastly, relationships within Trochozoa (Mollusca, Annelida, and relatives) largely remain ambiguous. Recent work has shown that phylogenomic studies must identify and reduce sources of systematic error, such as amino acid compositional heterogeneity and long-branch attraction. Still, other approaches such as the analysis of rare genomic changes may be needed to overcome challenges to standard phylogenomic approaches. Resolving lophotrochozoan phylogeny will provide important insight into how these complex and diverse body plans evolved and provide a much-needed framework for comparative studies.

[1]  R. Kristensen,et al.  Life Cycle and Morphology of a Cambrian Stem-Lineage Loriciferan , 2013, PloS one.

[2]  B. Hausdorf,et al.  Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept , 2008, Proceedings of the Royal Society B: Biological Sciences.

[3]  A. Hay-Schmidt The evolution of the serotonergic nervous system , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  J. Zrzavý Gastrotricha and metazoan phylogeny , 2003 .

[5]  Sliusarev Gs [Phylum Orthonectida: morphology, biology, and relationships to other multicellular animals]. , 2008 .

[6]  Mark Howison,et al.  Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda , 2014, bioRxiv.

[7]  Nicholas H. Putnam,et al.  Insights into bilaterian evolution from three spiralian genomes , 2012, Nature.

[8]  X. Caubit,et al.  Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. , 2004, Molecular biology and evolution.

[9]  J. Wägele,et al.  Deep metazoan phylogeny : the backbone of the tree of life : new insights from analyses of molecules, morphology, and theory of data analysis , 2014 .

[10]  P. Holland,et al.  Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera , 1999, Insect molecular biology.

[11]  A. Wanninger Shaping the Things to Come: Ontogeny of Lophotrochozoan Neuromuscular Systems and the Tetraneuralia Concept , 2009, The Biological Bulletin.

[12]  R. Kristensen,et al.  Detailed reconstruction of the musculature in Limnognathia maerski (Micrognathozoa) and comparison with other Gnathifera , 2014, Frontiers in Zoology.

[13]  G. Giribet,et al.  Investigations into the phylogenetic position of Micrognathozoa using four molecular loci , 2004, Cladistics : the international journal of the Willi Hennig Society.

[14]  Lars Orrhage Light and electron microscope studies of some brachiopod and pogonophoran setae , 1973, Zeitschrift für Morphologie der Tiere.

[15]  C. Schander,et al.  A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale , 2006, Nature.

[16]  Ziheng Yang,et al.  Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales , 2015, Current Biology.

[17]  M. Telford,et al.  Interrelationships of the Gastrotricha and their place among the Metazoa inferred from 18S rRNA genes , 2006 .

[18]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[19]  K. Halanych,et al.  Relationships of Higher Molluscan Taxa , 2008 .

[20]  R. Rieger A new group of interstitial worms, Lobatocerebridae nov. fam. (Annelida) and its significance for metazoan phylogeny , 1980, Zoomorphologie.

[21]  Seán G. Brady,et al.  Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera , 2014, Molecular ecology resources.

[22]  K. Halanych Convergence in the Feeding Apparatuses of Lophophorates and Pterobranch Hemichordates Revealed by 18S rDNA: An Interpretation. , 1996, The Biological bulletin.

[23]  T. Hankeln,et al.  Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta. , 2007, Molecular biology and evolution.

[24]  B. Cohen Rerooting the rDNA gene tree reveals phoronids to be ‘brachiopods without shells’; dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda) , 2013 .

[25]  R. Thomas IMPLICATIONS OF THE OCCURRENCE OF PAIRED ANTERIOR CHAETAE IN THE LATE EARLY CAMBRIAN MOLLUSC PELAGIELLA FROM THE KINZERS FORMATION OF PENNSYLVANIA FOR RELATIONSHIPS AMONG TAXA AND EARLY EVOLUTION OF THE MOLLUSCA , 2012 .

[26]  P. Taylor,et al.  A molecular phylogeny of bryozoans. , 2012, Molecular phylogenetics and evolution.

[27]  L. Hyman,et al.  The Invertebrates: Smaller Coelomate Groups. , 1959 .

[28]  D. Gordon The Resemblance of Bryozoan Gizzard Teeth to “Annelid-like” Setae , 1975 .

[29]  W. Wheeler,et al.  Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. , 2000, Systematic biology.

[30]  R. Shiel,et al.  Toward a Better Understanding of the Phylogeny of the Asplanchnidae (Rotifera) , 2005, Hydrobiologia.

[31]  R. A. Cloney,et al.  Ultrastructural Similarities Between Setae of Brachiopods and Polychaetes , 1972 .

[32]  K. Kocot Recent Advances and Unanswered Questions in Deep Molluscan Phylogenetics* , 2013 .

[33]  F. Harrison Microscopic anatomy of invertebrates , 1991 .

[34]  A. R. Wagner Molecular Biology and Evolution , 2001 .

[35]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[36]  T. Struck,et al.  Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes). , 2015, Molecular phylogenetics and evolution.

[37]  S. Harzsch,et al.  4 The Chaetognatha : An anarchistic taxon between Protostomia and Deuterostomia , 2014 .

[38]  M. Martindale,et al.  The mouth, the anus, and the blastopore—open questions about questionable openings , 2009 .

[39]  G. Wray Molecular clocks and the early evolution of metazoan nervous systems , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Mark A. Wilson,et al.  EVOLUTION OF BIOMINERALIZATION IN 'LOPHOPHORATES' , 2010 .

[41]  B. Nickel,et al.  Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. , 2012, Molecular phylogenetics and evolution.

[42]  C. Laumer,et al.  New insights into the phylogeny, systematics and DNA barcoding of Nemertea , 2014, Invertebrate Systematics.

[43]  D. Pisani,et al.  Animal Evolution: Only Rocks Can Set the Clock , 2015, Current Biology.

[44]  G. Giribet,et al.  Re-evaluating the phylogeny of Sipuncula through transcriptomics. , 2015, Molecular phylogenetics and evolution.

[45]  David Q. Matus,et al.  CORRESPONDENCES , 2019, Poems for the Millennium, Volume Three.

[46]  M. Litvaitis,et al.  Phylogeny of Gastrotricha: a morphology-based framework of gastrotrich relationships. , 2000, The Biological bulletin.

[47]  Frank E. Anderson,et al.  Bilaterian Phylogeny Based on Analyses of a Region of the Sodium–Potassium ATPase β-Subunit Gene , 2004, Journal of Molecular Evolution.

[48]  E. Voronezhskaya,et al.  Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae) , 2003, The Journal of comparative neurology.

[49]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[50]  Lars Orrhage Light and Electron Microscope Studies of Some Annelid Setae , 1971 .

[51]  Nicolas Lartillot,et al.  A site- and time-heterogeneous model of amino acid replacement. , 2008, Molecular biology and evolution.

[52]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[53]  Travis C Glenn,et al.  Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. , 2012, Systematic biology.

[54]  S. Yokobori,et al.  How the Early Genetic Code Was Established?: Inference from the Analysis of Extant Animal Mitochondrial Decoding Systems , 2014 .

[55]  W. Sterrer,et al.  New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna1 , 2009 .

[56]  B. Nickel,et al.  Illuminating the base of the annelid tree using transcriptomics. , 2014, Molecular biology and evolution.

[57]  C. Bleidorn,et al.  On the phylogenetic position of Myzostomida: can 77 genes get it wrong? , 2009, BMC Evolutionary Biology.

[58]  T. Lacalli,et al.  Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria , 2011, Development, growth & differentiation.

[59]  Jordi Garcia-Fernàndez,et al.  Archetypal organization of the amphioxus Hox gene cluster , 1994, Nature.

[60]  C. Nielsen Animal phylogeny in the light of the trochaea theory , 1985 .

[61]  I. Ebersberger,et al.  Transcriptome Data Reveal Syndermatan Relationships and Suggest the Evolution of Endoparasitism in Acanthocephala via an Epizoic Stage , 2014, PloS one.

[62]  Oleg Simakov,et al.  The octopus genome and the evolution of cephalopod neural and morphological novelties , 2015, Nature.

[63]  B. Hausdorf,et al.  Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). , 2010, Molecular phylogenetics and evolution.

[64]  F. Schram Animal evolution: Interrelationships of living Phyla , 1995 .

[65]  E. Temereva,et al.  Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features , 2012, BMC Evolutionary Biology.

[66]  A. Wanninger,et al.  The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda) , 2003, Zoomorphology.

[67]  Alexander Gruhl Serotonergic and FMRFamidergic nervous systems in gymnolaemate bryozoan larvae , 2009, Zoomorphology.

[68]  G. Rouse,et al.  Phylogeny of Myzostomida (Annelida) and their relationships with echinoderm hosts , 2014, BMC Evolutionary Biology.

[69]  Jose V. Lopez,et al.  The Global Invertebrate Genomics Alliance (GIGA): Developing community resources to study diverse invertebrate genomes , 2014 .

[70]  N. B. Petrov,et al.  New insight into the phylogeny of Mesozoa: Evidence from the 18S and 28S rRNA genes , 2010, Moscow University Biological Sciences Bulletin.

[71]  W. Westheide,et al.  Ultrastructure of Chrysopetalid paleal chaetae (Annelida, Polychaeta) , 1992 .

[72]  A. Schulze Ultrastructure of opisthosomal chaetae in Vestimentifera (Pogonophora, Obturata) and implications for phylogeny , 2002 .

[73]  G. Purschke,et al.  Detecting possibly saturated positions in 18S and 28S sequences and their influence on phylogenetic reconstruction of Annelida (Lophotrochozoa). , 2008, Molecular phylogenetics and evolution.

[74]  A. Wanninger,et al.  From complex to simple: myogenesis in an aplacophoran mollusk reveals key traits in aculiferan evolution , 2015, BMC Evolutionary Biology.

[75]  K. Peterson,et al.  Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences , 2001, Evolution & development.

[76]  Nicolas Lartillot,et al.  A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution. , 2006, Molecular biology and evolution.

[77]  H. Philippe,et al.  Acoel Flatworms Are Not Platyhelminthes: Evidence from Phylogenomics , 2007, PloS one.

[78]  J. Hui,et al.  Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). , 2015, Marine genomics.

[79]  G. Giribet,et al.  A phylogenetic backbone for Bivalvia: an RNA-seq approach , 2015, Proceedings of the Royal Society B: Biological Sciences.

[80]  Gonzalo Giribet,et al.  Higher-level metazoan relationships: recent progress and remaining questions , 2011, Organisms Diversity & Evolution.

[81]  C. Schander,et al.  Mitogenomics reveals phylogeny and repeated motifs in control regions of the deep-sea family Siboglinidae (Annelida). , 2015, Molecular phylogenetics and evolution.

[82]  E. Hunter,et al.  Localisation of biogenic amines in larvae of Bugula neritina (Bryozoa: Cheilostomatida) and their effects on settlement , 2000 .

[83]  D. Arendt,et al.  Did the notochord evolve from an ancient axial muscle? The axochord hypothesis , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[84]  M. Martindale,et al.  Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea) , 2004, Evolution & development.

[85]  G. Rouse,et al.  Phylogeny and systematics of Protodrilidae (Annelida) inferred with total evidence analyses , 2015, Cladistics : the international journal of the Willi Hennig Society.

[86]  R. de Wachter,et al.  18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. , 1995, Molecular biology and evolution.

[87]  M. E. Rice Sipuncula and Echiura , 2007 .

[88]  A. Schmidt-Rhaesa The Evolution of Organ Systems , 2007 .

[89]  I. Stöger,et al.  A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems , 2014 .

[90]  Çîîëîãèÿ áåñïîçâîíî÷íûõ,et al.  Invertebrate Zoology , 1927, Nature.

[91]  B. Cohen Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.) , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  J. Boore,et al.  The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[93]  P. Funch,et al.  Micrognathozoa: A new class with complicated jaws like those of Rotifera and Gnathostomulida , 2000, Journal of morphology.

[94]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[95]  M. Sutton,et al.  A chiton without a foot , 2012 .

[96]  L. R. Castro,et al.  The complete mitochondrial genome of Micrura ignea Schwartz & Norenburg 2005 (Nemertea: Heteronemertea) and comparative analysis with other nemertean mitogenomes. , 2015, Marine genomics.

[97]  E. Knauss Indication of an Anal Pore in Gnathostomulida , 1979 .

[98]  D. Jacobs,et al.  Expression of the Lhx genes apterous and lim1 in an errant polychaete: implications for bilaterian appendage evolution, neural development, and muscle diversification , 2013, EvoDevo.

[99]  Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa , 1999 .

[100]  A. Minelli Perspectives in Animal Phylogeny and Evolution , 2009 .

[101]  J. Baguñá,et al.  Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes , 2009, Proceedings of the Royal Society B: Biological Sciences.

[102]  A. Lemmon,et al.  Anchored hybrid enrichment for massively high-throughput phylogenomics. , 2012, Systematic biology.

[103]  K. Halanych,et al.  Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids , 2011, BMC Evolutionary Biology.

[104]  G. Giribet,et al.  Assembling the lophotrochozoan (=spiralian) tree of life , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[105]  A. Weydmann,et al.  Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian , 2005 .

[106]  M. Hattori,et al.  Proteome analysis of shell matrix proteins in the brachiopod Laqueus rubellus , 2015, Proteome Science.

[107]  M. Obst,et al.  On the Phylogenetic Position of Rotifera – Have We Come Any Further? , 2005, Hydrobiologia.

[108]  B. Hausdorf,et al.  Compositional heterogeneity and phylogenomic inference of metazoan relationships. , 2010, Molecular biology and evolution.

[109]  S. Santagata,et al.  Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1 , 2009 .

[110]  R. C. Thomson,et al.  A critical appraisal of the use of microRNA data in phylogenetics , 2014, Proceedings of the National Academy of Sciences.

[111]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[112]  L. Moroz,et al.  Phylogenomics reveals deep molluscan relationships , 2011, Nature.

[113]  R. Kristensen,et al.  Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta , 1995, Nature.

[114]  G. Giribet New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics , 2016, Organisms Diversity & Evolution.

[115]  S. Pomponi,et al.  The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. , 2013, The Journal of heredity.

[116]  I. Ebersberger,et al.  Support for the monophyletic origin of Gnathifera from phylogenomics. , 2009, Molecular phylogenetics and evolution.

[117]  N. Satoh,et al.  The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization , 2015, Nature Communications.

[118]  Michael Kube,et al.  Parallel evolution of nacre building gene sets in molluscs. , 2010, Molecular biology and evolution.

[119]  J. Vinther,et al.  A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors , 2012, Proceedings of the Royal Society B: Biological Sciences.

[120]  Oleg Simakov,et al.  Development of the annelid axochord: Insights into notochord evolution , 2014, Science.

[121]  R. A. Cloney,et al.  Cephalopod integument: The ultrastructure of Kölliker's organs and their relationship to setae , 2004, Cell and Tissue Research.

[122]  A. Wanninger,et al.  Aplacophoran Mollusks Evolved from Ancestors with Polyplacophoran-like Features , 2013, Current Biology.

[123]  G. Giribet,et al.  Animal Phylogeny and Its Evolutionary Implications , 2014 .

[124]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[125]  Stephen A. Smith,et al.  Resolving the evolutionary relationships of molluscs with phylogenomic tools , 2011, Nature.

[126]  C. Emig On the origin of the Lophophorata , 2009 .

[127]  Marta Riutort,et al.  Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal acoelomorpha. , 2009, Molecular biology and evolution.

[128]  John Tyler Bonner,et al.  Evolution and Development , 1998 .

[129]  M. Martindale,et al.  Assessing the root of bilaterian animals with scalable phylogenomic methods , 2009, Proceedings of the Royal Society B: Biological Sciences.

[130]  M. Obst,et al.  The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa). , 2010, Molecular phylogenetics and evolution.

[131]  G. S. Sliusarev [Phylum Orthonectida: morphology, biology, and relationships to other multicellular animals]. , 2008, Zhurnal obshchei biologii.

[132]  K. Peterson,et al.  Molecular paleobiological insights into the origin of the Brachiopoda , 2011, Evolution & development.

[133]  B. Leander,et al.  Masters of miniaturization: Convergent evolution among interstitial eukaryotes , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[134]  A. Wanninger,et al.  Neuromuscular development in Novocrania anomala: evidence for the presence of serotonin and a spiralian‐like apical organ in lecithotrophic brachiopod larvae , 2010, Evolution & development.

[135]  W. Ahlrichs Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera , 1997, Zoomorphology.

[136]  C. Nielsen,et al.  Structure and occurrence of cyphonautes larvae (bryozoa, ectoprocta) , 2010, Journal of morphology.

[137]  A. Wanninger,et al.  On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca , 2007 .

[138]  G. Gyapay,et al.  Chætognath transcriptome reveals ancestral and unique features among bilaterians , 2008, Genome Biology.

[139]  T. Bartolomaeus,et al.  The phylogenetic position of Brachiopoda—a comparison of morphological and molecular data , 1997 .

[140]  Natascha Hill,et al.  Phylogenomic analyses unravel annelid evolution , 2011, Nature.

[141]  C. Nielsen Entoproct life-cycles and the entoproct/ectoproct relationship , 1971 .

[142]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[143]  C. Todt,et al.  Three new meiofaunal solenogaster species (Mollusca: Aplacophora) from the north-east Pacific , 2014 .

[144]  Anne Weigert,et al.  The Evolution of Annelids Reveals Two Adaptive Routes to the Interstitial Realm , 2015, Current Biology.

[145]  R. Woollacott,et al.  Serotonin and Dopamine Have Opposite Effects on Phototaxis in Larvae of the Bryozoan Bugula neritina. , 1997, The Biological bulletin.

[146]  B. Hanelt,et al.  The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. , 1996, Molecular biology and evolution.

[147]  B. Hausdorf,et al.  Multigene analysis of lophophorate and chaetognath phylogenetic relationships. , 2008, Molecular phylogenetics and evolution.

[148]  G. Gilbert,et al.  THE NEW VIEW OF ANIMAL PHYLOGENY , 2005 .

[149]  G. Rouse,et al.  Articulating "Archiannelids": Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. , 2015, Molecular biology and evolution.

[150]  A. Stuart A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION , 1955 .

[151]  K. Kocot A combined approach toward resolving the phylogeny of Mollusca , 2013 .

[152]  R. Wachter,et al.  18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta , 1996, Journal of Molecular Evolution.

[153]  A. Hejnol,et al.  Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[154]  G. Purschke,et al.  Mitochondrial genomes to the rescue--Diurodrilidae in the myzostomid trap. , 2013, Molecular phylogenetics and evolution.

[155]  J. Weissenbach,et al.  Chaetognath phylogenomics: a protostome with deuterostome-like development , 2006, Current Biology.

[156]  N. Skunca,et al.  A Transcriptomic-Phylogenomic Analysis of the Evolutionary Relationships of Flatworms , 2015, Current Biology.

[157]  A. Hejnol,et al.  Getting to the bottom of anal evolution , 2015 .

[158]  G. Rouse,et al.  Is Diurodrilus an annelid? , 2008, Journal of morphology.

[159]  T. Cavalier-smith,et al.  Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences , 1998 .

[160]  H. Furuya,et al.  Phylogenetic Analysis of Dicyemid Mesozoans (Phylum Dicyemida) From Innexin Amino Acid Sequences: Dicyemids Are Not Related to Platyhelminthes , 2010, The Journal of parasitology.

[161]  M. Martindale,et al.  Assembling the spiralian tree of life , 2009 .

[162]  J. S. Peel A Corset-Like Fossil from the Cambrian Sirius Passet Lagerstätte of North Greenland and Its Implications for Cycloneuralian Evolution , 2010 .

[163]  J. Mallatt,et al.  Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. , 2012, Molecular phylogenetics and evolution.

[164]  C. Bleidorn,et al.  Annelid phylogeny and the status of Sipuncula and Echiura , 2007, BMC Evolutionary Biology.

[165]  E. Wurdak Ultrastructure and histochemistry, of the stomach of Asplanchna sieboldi , 1987, Hydrobiologia.

[166]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[167]  P. Stadler,et al.  Near intron pairs and the metazoan tree. , 2013, Molecular phylogenetics and evolution.

[168]  S. Santagata Evolutionary and Structural Diversification of the Larval Nervous System Among Marine Bryozoans , 2008, The Biological Bulletin.

[169]  J. Sigwart,et al.  A Silurian armoured aplacophoran and implications for molluscan phylogeny , 2012, Nature.

[170]  B. Schierwater,et al.  Putting Animals in their Place within a Context of Eukaryotic Innovations , 2010 .

[171]  A. Wanninger,et al.  Muscular anatomy of an entoproct creeping-type larva reveals extraordinary high complexity and potential shared characters with mollusks , 2015, BMC Evolutionary Biology.

[172]  Y. Passamaneck,et al.  Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. , 2006, Molecular phylogenetics and evolution.

[173]  J. Vinther Animal Evolution: When Small Worms Cast Long Phylogenetic Shadows , 2015, Current Biology.

[174]  D. Ferrier,et al.  Biomineralisation during operculum regeneration in the polychaete Spirobranchus lamarcki , 2014 .

[175]  D. McHugh,et al.  Molecular evidence that echiurans and pogonophorans are derived annelids. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[176]  Clals Nielsen The Relationships of Entoprocta, Ectoprocta and Phoronida , 1977 .

[177]  J. Huelsenbeck,et al.  Bayesian Inference of the Metazoan Phylogeny A Combined Molecular and Morphological Approach , 2004, Current Biology.

[178]  Anne Weigert,et al.  Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of spiralia. , 2014, Molecular biology and evolution.

[179]  T. Struck,et al.  Phylogenetic position of Nemertea derived from phylogenomic data. , 2008, Molecular biology and evolution.

[180]  C. Lombardi,et al.  Biomineralization in bryozoans: present, past and future , 2015, Biological reviews of the Cambridge Philosophical Society.

[181]  William Arndt,et al.  Phylogenetic analysis of genome rearrangements among five mammalian orders. , 2012, Molecular phylogenetics and evolution.

[182]  G. Rouse,et al.  A modern look at the Animal Tree of Life , 2007 .

[183]  J. Boore,et al.  The mitochondrial genome of Phoronis architecta--comparisons demonstrate that phoronids are lophotrochozoan protostomes. , 2004, Molecular biology and evolution.

[184]  G. Wörheide,et al.  The Magellania venosa Biomineralizing Proteome: A Window into Brachiopod Shell Evolution , 2015, Genome biology and evolution.

[185]  Patrick Kück,et al.  BaCoCa--a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. , 2014, Molecular phylogenetics and evolution.

[186]  C. Nielsen Structure and Function of Metazoan Ciliary Bands and Their Phylogenetic Significance , 1987 .

[187]  M. Hofreiter,et al.  Capturing protein-coding genes across highly divergent species. , 2013, BioTechniques.

[188]  G. Giribet,et al.  A transcriptomic approach to ribbon worm systematics (nemertea): resolving the pilidiophora problem. , 2014, Molecular biology and evolution.

[189]  B. Schierwater,et al.  Key transitions in animal evolution. , 2010, Integrative and comparative biology.

[190]  G. Giribet,et al.  Spiralian Phylogeny Informs the Evolution of Microscopic Lineages , 2015, Current Biology.

[191]  B. Nickel,et al.  Exploiting Gene Families for Phylogenomic Analysis of Myzostomid Transcriptome Data , 2012, PloS one.

[192]  A. Hejnol A twist in time--the evolution of spiral cleavage in the light of animal phylogeny. , 2010, Integrative and comparative biology.

[193]  Sean B. Carroll,et al.  Hox genes in brachiopods and priapulids and protostome evolution , 1999, Nature.

[194]  S. A. Tyurin,et al.  Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora) , 2002, The Journal of comparative neurology.

[195]  A. Wanninger,et al.  Anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications , 2007 .

[196]  A. Bezděk,et al.  Phylogeny of the Metazoa Based on Morphological and 18S Ribosomal DNA Evidence , 1998, Cladistics : the international journal of the Willi Hennig Society.

[197]  J. Baguñá,et al.  Back in time: a new systematic proposal for the Bilateria , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[198]  L. Zaninetti,et al.  Origin of the Mesozoa inferred from 18S rRNA gene sequences. , 1996, Molecular biology and evolution.

[199]  I. Ebersberger,et al.  New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias , 2013, BMC Evolutionary Biology.