Advantages of coherent feedback for cooling quantum oscillators.

We model the cooling of open optical and optomechanical resonators via optical feedback in the linear quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes, in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform the best possible linear quadratic Gaussian measurement-based schemes in the quantum regime of low steady-state excitation number. Such performance gains are attributed to the coherent controller's ability to process noncommuting output field quadratures simultaneously without loss of fidelity, and may provide important clues for the design of coherent feedback schemes for more general problems of nonlinear and robust control.

[1]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[2]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  D. Stamper-Kurn,et al.  Linear Amplifier Model for Optomechanical Systems , 2011, 1107.4813.

[5]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[6]  H M Wiseman,et al.  Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.

[7]  Naoki Yamamoto,et al.  Experimental Demonstration of Coherent Feedback Control on Optical Field Squeezing , 2011, IEEE Transactions on Automatic Control.

[8]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[9]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[10]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[11]  Stéphane Attal,et al.  Open Quantum Systems III: Recent Developments , 2006 .

[12]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[13]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[14]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[15]  Beating quantum limits in optomechanical sensor by cavity detuning , 2006, quant-ph/0602040.

[16]  K J Resch,et al.  Experimental feedback control of quantum systems using weak measurements. , 2009, Physical review letters.

[17]  C. Caves,et al.  Coherent quantum-noise cancellation for optomechanical sensors. , 2010, Physical review letters.

[18]  Dirk Bouwmeester,et al.  Sub-kelvin optical cooling of a micromechanical resonator , 2006, Nature.

[19]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[20]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[21]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[22]  Hideo Mabuchi,et al.  Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability , 2011, 1101.3461.

[23]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[24]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Dmitri S. Pavlichin,et al.  Design of nanophotonic circuits for autonomous subsystem quantum error correction , 2011, 1102.3143.

[27]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[28]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[29]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[30]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[31]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[32]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[33]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[34]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[35]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[36]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[37]  Masahiro Yanagisawa,et al.  Quantum feedback control for deterministic entangled photon generation. , 2006, Physical review letters.

[38]  Christoph Becher,et al.  Feedback cooling of a single trapped ion. , 2006, Physical review letters.

[39]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  Jing Zhang,et al.  Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip , 2011, IEEE Transactions on Automatic Control.