An Absolutely Stable Discontinuous Galerkin Method for the Indefinite Time-Harmonic Maxwell Equations with Large Wave Number

This paper develops and analyzes an interior penalty discontinuous Galerkin (IPDG) method using piecewise linear polynomials for the indefinite time harmonic Maxwell equations with the impedance boundary condition in the three-dimensional space. The main novelties of the proposed IPDG method include the following: first, the method penalizes not only the jumps of the tangential component of the electric field across the element faces but also the jumps of the tangential component of its vorticity field; second, the penalty parameters are taken as complex numbers of negative imaginary parts. For the differential problem, we prove that the sesquilinear form associated with the Maxwell problem satisfies a generalized weak stability (i.e., inf-sup condition) for star-shaped domains. Such a generalized weak stability readily infers wave-number explicit a priori estimates for the solution of the Maxwell problem, which plays an important role in the error analysis for the IPDG method. For the proposed IPDG metho...

[1]  Ralf Hiptmair,et al.  Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations , 2011, Math. Comput..

[2]  F. Rellich Darstellung der Eigenwerte vonδu+λu=0 durch ein Randintegral , 1940 .

[3]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[4]  Zhiming Chen,et al.  A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain , 2013, SIAM J. Numer. Anal..

[5]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[6]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Jinchao Xu,et al.  OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS * , 2009 .

[9]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[10]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[11]  M. Ainsworth Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  G. Gatica,et al.  Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition , 2012 .

[13]  P. Cummings,et al.  SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS , 2006 .

[14]  C. Lorton,et al.  Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media , 2014 .

[15]  Haijun Wu,et al.  hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[18]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[19]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[20]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[21]  Bernardo Cockburn,et al.  Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations , 2011, J. Comput. Phys..

[22]  Ralf Hiptmair,et al.  STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS , 2011 .

[23]  Haijun Wu,et al.  Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..

[24]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[25]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .