An Absolutely Stable Discontinuous Galerkin Method for the Indefinite Time-Harmonic Maxwell Equations with Large Wave Number
暂无分享,去创建一个
[1] Ralf Hiptmair,et al. Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations , 2011, Math. Comput..
[2] F. Rellich. Darstellung der Eigenwerte vonδu+λu=0 durch ein Randintegral , 1940 .
[3] Ilaria Perugia,et al. Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .
[4] Zhiming Chen,et al. A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain , 2013, SIAM J. Numer. Anal..
[5] Ilaria Perugia,et al. Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.
[6] Stefan A. Sauter,et al. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..
[7] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[8] Jinchao Xu,et al. OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS * , 2009 .
[9] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[10] Lexing Ying,et al. Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..
[11] M. Ainsworth. Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[12] G. Gatica,et al. Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition , 2012 .
[13] P. Cummings,et al. SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS , 2006 .
[14] C. Lorton,et al. Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media , 2014 .
[15] Haijun Wu,et al. hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..
[16] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[17] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[18] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[19] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[20] Jens Markus Melenk,et al. Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..
[21] Bernardo Cockburn,et al. Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations , 2011, J. Comput. Phys..
[22] Ralf Hiptmair,et al. STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS , 2011 .
[23] Haijun Wu,et al. Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..
[24] Haijun Wu,et al. Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..
[25] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .