暂无分享,去创建一个
[1] Between Decidability. Skolem's Problem - On the Border , 2005 .
[2] G. Ziegler. Lectures on Polytopes , 1994 .
[3] Mikhail N. Vyalyi,et al. Orbits of linear maps and regular languages , 2011 .
[4] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[5] Mikhail N. Vyalyi,et al. Orbits of linear maps and regular languages , 2010, CSR.
[6] Joël Ouaknine,et al. The orbit problem in higher dimensions , 2013, STOC '13.
[7] T. Cusick,et al. The Markoff and Lagrange Spectra , 1989 .
[8] Joël Ouaknine,et al. On the Complexity of the Orbit Problem , 2013, J. ACM.
[9] Peter Bro Miltersen,et al. 2 The Task of a Numerical Analyst , 2022 .
[10] Richard J. Lipton,et al. Polynomial-time algorithm for the orbit problem , 1986, JACM.
[11] Richard J. Lipton,et al. The orbit problem is decidable , 1980, STOC '80.
[12] Michael A. Harrison,et al. Lectures on linear sequential machines , 1969 .
[13] David Lee,et al. Online minimization of transition systems (extended abstract) , 1992, STOC '92.
[14] Igor E. Shparlinski,et al. Recurrence Sequences , 2003, Mathematical surveys and monographs.
[15] Amir M. Ben-Amram,et al. Ranking Functions for Linear-Constraint Loops , 2012, JACM.
[16] Jeffrey D. Vaaler,et al. Review: Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra , 1991 .
[17] Terence Tao. Structure and Randomness: Pages from Year One of a Mathematical Blog , 2008 .
[18] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[19] Joël Ouaknine,et al. Decision Problems for Linear Recurrence Sequences , 2012, SCSS.
[20] Terence Tao,et al. Structure and randomness , 2008 .
[21] Gisbert Wüstholz,et al. Logarithmic forms and group varieties. , 1993 .
[22] Joël Ouaknine,et al. Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.
[23] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[24] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..
[25] I. G. MacDonald,et al. CONVEX POLYTOPES AND THE UPPER BOUND CONJECTURE , 1973 .
[26] M. Mignotte. Some Useful Bounds , 1983 .
[27] Mark Braverman,et al. Termination of Integer Linear Programs , 2006, CAV.
[28] V. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .
[29] Joel Ouaknine,et al. On Termination of Integer Linear Loops , 2015, SODA.