The Polyhedron-Hitting Problem

We consider polyhedral versions of Kannan and Lipton's Orbit Problem [14, 13]---determining whether a target polyhedron V may be reached from a starting point x under repeated applications of a linear transformation A in an ambient vector space Qm. In the context of program verification, very similar reachability questions were also considered and left open by Lee and Yannakakis in [15], and by Braverman in [4]. We present what amounts to a complete characterisation of the decidability landscape for the Polyhedron-Hitting Problem, expressed as a function of the dimension m of the ambient space, together with the dimension of the polyhedral target V: more precisely, for each pair of dimensions, we either establish decidability, or show hardness for longstanding number-theoretic open problems.

[1]  Between Decidability Skolem's Problem - On the Border , 2005 .

[2]  G. Ziegler Lectures on Polytopes , 1994 .

[3]  Mikhail N. Vyalyi,et al.  Orbits of linear maps and regular languages , 2011 .

[4]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[5]  Mikhail N. Vyalyi,et al.  Orbits of linear maps and regular languages , 2010, CSR.

[6]  Joël Ouaknine,et al.  The orbit problem in higher dimensions , 2013, STOC '13.

[7]  T. Cusick,et al.  The Markoff and Lagrange Spectra , 1989 .

[8]  Joël Ouaknine,et al.  On the Complexity of the Orbit Problem , 2013, J. ACM.

[9]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[10]  Richard J. Lipton,et al.  Polynomial-time algorithm for the orbit problem , 1986, JACM.

[11]  Richard J. Lipton,et al.  The orbit problem is decidable , 1980, STOC '80.

[12]  Michael A. Harrison,et al.  Lectures on linear sequential machines , 1969 .

[13]  David Lee,et al.  Online minimization of transition systems (extended abstract) , 1992, STOC '92.

[14]  Igor E. Shparlinski,et al.  Recurrence Sequences , 2003, Mathematical surveys and monographs.

[15]  Amir M. Ben-Amram,et al.  Ranking Functions for Linear-Constraint Loops , 2012, JACM.

[16]  Jeffrey D. Vaaler,et al.  Review: Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra , 1991 .

[17]  Terence Tao Structure and Randomness: Pages from Year One of a Mathematical Blog , 2008 .

[18]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[19]  Joël Ouaknine,et al.  Decision Problems for Linear Recurrence Sequences , 2012, SCSS.

[20]  Terence Tao,et al.  Structure and randomness , 2008 .

[21]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[22]  Joël Ouaknine,et al.  Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.

[23]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[24]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[25]  I. G. MacDonald,et al.  CONVEX POLYTOPES AND THE UPPER BOUND CONJECTURE , 1973 .

[26]  M. Mignotte Some Useful Bounds , 1983 .

[27]  Mark Braverman,et al.  Termination of Integer Linear Programs , 2006, CAV.

[28]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[29]  Joel Ouaknine,et al.  On Termination of Integer Linear Loops , 2015, SODA.