Shallow water equations in Lagrangian coordinates: Symmetries, conservation laws and its preservation in difference models

The one-dimensional shallow water equations in Eulerian and Lagrangian coordinates are considered. It is shown the relationship between symmetries and conservation laws in Lagrangian (potential) coordinates and symmetries and conservation laws in mass Lagrangian variables. For equations in Lagrangian coordinates with a flat bottom an invariant difference scheme is constructed which possesses all the difference analogues of the conservation laws: mass, momentum, energy, the law of center of mass motion. Some exact invariant solutions are constructed for the invariant scheme, while the scheme admits reduction on subgroups as well as the original system of equations. For an arbitrary shape of bottom it is possible to construct an invariant scheme with conservation of mass and momentum or energy. Invariant conservative difference scheme for the case of a flat bottom tested numerically in comparison with other known schemes.

[1]  N. Ibragimov Transformation groups applied to mathematical physics , 1984 .

[2]  M. Kimura,et al.  Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition , 2019, Discrete & Continuous Dynamical Systems - S.

[3]  Alexander Khoperskov,et al.  Numerical Model of Shallow Water: the Use of NVIDIA CUDA Graphics Processors , 2016, ArXiv.

[4]  V. Dorodnitsyn,et al.  Invariance and first integrals of continuous and discrete Hamiltonian equations , 2009, 0906.1891.

[5]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[6]  G. R. W. Quispel,et al.  Lie symmetries and the integration of difference equations , 1993 .

[7]  S. Meleshko,et al.  Symmetries of the hyperbolic shallow water equations and the Green–Naghdi model in Lagrangian coordinates , 2016 .

[8]  Alexander Bihlo,et al.  Symmetry analysis of a system of modified shallow-water equations , 2012, Commun. Nonlinear Sci. Numer. Simul..

[9]  A. Paliathanasis Lie Symmetries and Similarity Solutions for Rotating Shallow Water , 2019, Zeitschrift für Naturforschung A.

[10]  Shigeru Maeda,et al.  The Similarity Method for Difference Equations , 1987 .

[11]  V. Dorodnitsyn Applications of Lie Groups to Difference Equations , 2010 .

[12]  D. Dutykh,et al.  Dispersive shallow water wave modelling. Part I: Model derivation on a globally flat space , 2017, 1706.08815.

[13]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[14]  P. Winternitz,et al.  The adjoint equation method for constructing first integrals of difference equations , 2015 .

[15]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[16]  G. Bluman,et al.  Symmetry and Integration Methods for Differential Equations , 2002 .

[17]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .

[18]  Roman Kozlov,et al.  Conservative difference schemes for one-dimensional flows of polytropic gas , 2019, Commun. Nonlinear Sci. Numer. Simul..

[19]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[20]  Martin Welk,et al.  Numerical Invariantization for Morphological PDE Schemes , 2007, SSVM.

[21]  V. Dorodnitsyn,et al.  Invariant difference schemes for the Ermakov system , 2016 .

[22]  P. Clarkson,et al.  Symmetry group analysis of the shallow water and semi-geostrophic equations , 2005 .

[23]  Eleuterio F. Toro,et al.  Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry , 2008, J. Comput. Phys..

[24]  V. Dorodnitsyn,et al.  Discretization of second-order ordinary differential equations with symmetries , 2013 .

[25]  Werner Bauer,et al.  Variational integrator for the rotating shallow‐water equations on the sphere , 2018, Quarterly Journal of the Royal Meteorological Society.

[26]  D. Dutykh,et al.  Dispersive shallow water wave modelling. Part IV: Numerical simulation on a globally spherical geometry , 2017, 1707.02552.

[27]  Georg Scheffers,et al.  Geometrie der Berührungstransformationen , 1976 .

[28]  V. Dorodnitsyn,et al.  A Heat Transfer with a Source: the Complete Set of Invariant Difference Schemes , 2003, math/0309139.

[29]  G. Bluman,et al.  Direct Construction of Conservation Laws from Field Equations , 1997 .

[30]  A. Kulikovskii,et al.  Mathematical Aspects of Numerical Solution of Hyperbolic Systems , 1998, physics/9807053.

[31]  G. Gaeta Nonlinear symmetries and nonlinear equations , 1994 .

[32]  Manuel Jesús Castro Díaz,et al.  Reliability of first order numerical schemes for solving shallow water system over abrupt topography , 2012, Appl. Math. Comput..

[33]  Sergey V. Meleshko,et al.  One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: Symmetry classification, conservation laws, difference schemes , 2018, Commun. Nonlinear Sci. Numer. Simul..

[34]  Numerical implementation of an invariant scheme for one-dimensional shallow water equations in Lagrangian coordinates , 2019, Keldysh Institute Preprints.

[35]  Z. Yin On the Cauchy Problem for a Nonlinearly Dispersive Wave Equation , 2003, math/0309183.

[36]  P. Winternitz,et al.  First integrals of difference equations which do not possess a variational formulation , 2014 .

[37]  A. Aksenov,et al.  Conservation laws and symmetries of the shallow water system above rough bottom , 2016 .

[38]  Roman Kozlov,et al.  Lie group classification of second-order ordinary difference equations , 2000 .

[39]  S. Meleshko,et al.  Analysis of the one-dimensional Euler–Lagrange equation of continuum mechanics with a Lagrangian of a special form , 2018, Applied Mathematical Modelling.

[40]  C. Vreugdenhil Numerical methods for shallow-water flow , 1994 .

[41]  Roberto Floreanini,et al.  Lie symmetries of finite‐difference equations , 1995 .

[42]  D. Levi,et al.  Continuous symmetries of difference equations , 2005, nlin/0502004.

[43]  Y. Popov,et al.  Two-layer completely conservative difference schemes for the equations of gas dynamics in Euler variables , 1988 .

[44]  Roman O. Popovych,et al.  Invariant Discretization Schemes for the Shallow-Water Equations , 2012, SIAM J. Sci. Comput..

[45]  On the Linearization of Second-Order Differential and Difference Equations , 2006, nlin/0608038.

[46]  Continuous symmetries of Lagrangians and exact solutions of discrete equations , 2003, nlin/0307042.

[47]  C. Rogers,et al.  Group theoretical analysis of a rotating shallow liquid in a rigid container , 1989 .

[48]  S. MacLachlan,et al.  Well-balanced mesh-based and meshless schemes for the shallow-water equations , 2017, 1702.07749.

[49]  A. Aksenov,et al.  Conservation laws of the equation of one-dimensional shallow water over uneven bottom in Lagrange’s variables , 2020 .

[50]  FINITE-DIFFERENCE ANALOG OF THE NOETHER THEOREM , 1993 .

[51]  Tan Weiyan,et al.  Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for a Two-dimensional System of Shallow Water Equations , 2012 .

[52]  Y. Chirkunov,et al.  Symmetry Properties and Solutions of Shallow Water Equations , 2014 .

[53]  Geoffrey K. Vallis,et al.  Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[54]  V. Dorodnitsyn,et al.  Symmetries and Integrability of Difference Equations: Lagrangian and Hamiltonian Formalism for Discrete Equations: Symmetries and First Integrals , 2011 .

[55]  Peter E. Hydon,et al.  Difference Equations by Differential Equation Methods , 2014 .

[56]  N. Ibragimov A new conservation theorem , 2007 .

[57]  S. Lie Theorie der Transformationsgruppen I , 1880 .

[58]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[59]  N. N. Yanenko,et al.  Systems of Quasilinear Equations and Their Applications to Gas Dynamics , 1983 .

[60]  Robert D. Russell,et al.  Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..

[61]  V. Dorodnitsyn Finite Difference Models Entirely Inheriting Symmetry of Original Differential Equations , 1993 .

[62]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[63]  G. Warnecke,et al.  EXACT RIEMANN SOLUTIONS TO COMPRESSIBLE EULER EQUATIONS IN DUCTS WITH DISCONTINUOUS CROSS-SECTION , 2012 .

[64]  V. Dorodnitsyn Transformation groups in net spaces , 1991 .

[65]  A. A. Samarskii,et al.  Completely conservative difference schemes , 1969 .

[66]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[67]  G. Bluman,et al.  Applications of Symmetry Methods to Partial Differential Equations , 2009 .