Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease

The complex of Vacuolar Protein Sorting 34 and 15 (Vps34 and Vps15) has Class III phosphatidylinositol 3‐kinase activity and putative roles in nutrient sensing, mammalian Target Of Rapamycin (mTOR) activation by amino acids, cell growth, vesicular trafficking and autophagy. Contrary to expectations, here we show that Vps15‐deficient mouse tissues are competent for LC3‐positive autophagosome formation and maintain mTOR activation. However, an impaired lysosomal function in mutant cells is traced by accumulation of adaptor protein p62, LC3 and Lamp2 positive vesicles, which can be reverted to normal levels after ectopic overexpression of Vps15. Mice lacking Vps15 in skeletal muscles, develop a severe myopathy. Distinct from the autophagy deficient Atg7−/− mutants, pathognomonic morphological hallmarks of autophagic vacuolar myopathy (AVM) are observed in Vps15−/− mutants, including elevated creatine kinase plasma levels, accumulation of autophagosomes, glycogen and sarcolemmal features within the fibres. Importantly, Vps34/Vps15 overexpression in myoblasts of Danon AVM disease patients alleviates the glycogen accumulation. Thus, the activity of the Vps34/Vps15 complex is critical in disease conditions such as AVMs, and possibly a variety of other lysosomal storage diseases.

[1]  S. Tooze,et al.  Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes , 2009, The Journal of cell biology.

[2]  H. Stenmark,et al.  Interaction of the EEA1 FYVE Finger with Phosphatidylinositol 3-Phosphate and Early Endosomes , 2000, The Journal of Biological Chemistry.

[3]  R. Flavell,et al.  Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis , 2012, Proceedings of the National Academy of Sciences.

[4]  H. Stenmark,et al.  FYVE-finger proteins--effectors of an inositol lipid. , 1999, Journal of cell science.

[5]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[6]  Xiaoping Zhou,et al.  The Mammalian Class 3 PI3K (PIK3C3) Is Required for Early Embryogenesis and Cell Proliferation , 2011, PloS one.

[7]  Stefano Fumagalli,et al.  Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase , 1998, The EMBO journal.

[8]  N. Maraldi,et al.  Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration , 2010, Nature Medicine.

[9]  V. Deretic,et al.  The role of PI3P phosphatases in the regulation of autophagy , 2010, FEBS letters.

[10]  Haiyan Wu,et al.  hVps15, but not Ca2+/CaM, is required for the activity and regulation of hVps34 in mammalian cells , 2008, The Biochemical journal.

[11]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[12]  S. Emr,et al.  Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. , 1988, Molecular and cellular biology.

[13]  T. P. Neufeld,et al.  The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila , 2008, The Journal of cell biology.

[14]  M. Sandri Autophagy in skeletal muscle , 2010, FEBS letters.

[15]  Daniel J. Klionsky,et al.  Autophagy: from phenomenology to molecular understanding in less than a decade , 2007, Nature Reviews Molecular Cell Biology.

[16]  James T. Murray,et al.  hVps34 Is a Nutrient-regulated Lipid Kinase Required for Activation of p70 S6 Kinase* , 2005, Journal of Biological Chemistry.

[17]  T. Noda,et al.  Modulation of Local PtdIns3P Levels by the PI Phosphatase MTMR3 Regulates Constitutive Autophagy , 2010, Traffic.

[18]  L. Kunkel,et al.  MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers , 2010, Proceedings of the National Academy of Sciences.

[19]  P. Codogno,et al.  Overview of macroautophagy regulation in mammalian cells , 2010, Cell Research.

[20]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[21]  Alfred Nordheim,et al.  WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy , 2004, Oncogene.

[22]  K. Rajewsky,et al.  A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. , 1995, Nucleic acids research.

[23]  M. Matsui,et al.  In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. , 2003, Molecular biology of the cell.

[24]  T. Noda,et al.  Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3 , 2007, Autophagy.

[25]  K. von Figura,et al.  Role of LAMP-2 in lysosome biogenesis and autophagy. , 2002, Molecular biology of the cell.

[26]  J. Backer,et al.  Class III PI-3-kinase activates phospholipase D in an amino acid–sensing mTORC1 pathway , 2011, The Journal of cell biology.

[27]  S. Young,et al.  ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration , 2007, Current Biology.

[28]  H. Stenmark,et al.  p62, an autophagy hero or culprit? , 2010, Nature Cell Biology.

[29]  P. Meikle,et al.  Epidemiology of lysosomal storage diseases: an overview , 2006 .

[30]  J. Avruch,et al.  Amino acid regulation of TOR complex 1. , 2009, American journal of physiology. Endocrinology and metabolism.

[31]  B. Vanhaesebroeck,et al.  The emerging mechanisms of isoform-specific PI3K signalling , 2010, Nature Reviews Molecular Cell Biology.

[32]  K. Liestøl,et al.  A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. , 2010, Experimental cell research.

[33]  D. Metzger,et al.  Autophagy is required to maintain muscle mass. , 2009, Cell metabolism.

[34]  P. Codogno,et al.  Canonical and non-canonical autophagy: variations on a common theme of self-eating? , 2011, Nature Reviews Molecular Cell Biology.

[35]  S. Akira,et al.  Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages , 2009, Nature Cell Biology.

[36]  P. Bénit,et al.  S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. , 2007, Cell metabolism.

[37]  F. Wendler,et al.  ESCRTs and Fab1 Regulate Distinct Steps of Autophagy , 2007, Current Biology.

[38]  M. Komatsu,et al.  Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder—murine Pompe disease , 2010, Autophagy.

[39]  F. Natt,et al.  Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Ian Mcleod,et al.  The Class III Kinase Vps34 Promotes T Lymphocyte Survival through Regulating IL-7Rα Surface Expression , 2011, The Journal of Immunology.

[41]  S. Dimauro,et al.  Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease) , 2000, Nature.

[42]  S. Emr,et al.  Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting , 1988, The Journal of cell biology.

[43]  Qing Jun Wang,et al.  Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex , 2009, Nature Cell Biology.

[44]  Takeshi Noda,et al.  Two Distinct Vps34 Phosphatidylinositol 3–Kinase Complexes Function in Autophagy and Carboxypeptidase Y Sorting inSaccharomyces cerevisiae , 2001, The Journal of cell biology.

[45]  Jin-A Lee,et al.  Inhibition of Autophagy Induction Delays Neuronal Cell Loss Caused by Dysfunctional ESCRT-III in Frontotemporal Dementia , 2009, The Journal of Neuroscience.

[46]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[47]  She Chen,et al.  A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. , 2012, Molecular cell.

[48]  I. Nishino Autophagic vacuolar myopathies , 2003, Current neurology and neuroscience reports.

[49]  K. Takegawa,et al.  Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. , 1993, Science.

[50]  R. Lüllmann-Rauch,et al.  Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice , 2000, Nature.

[51]  D. Stephenson,et al.  Abnormalities in structure and function of limb skeletal muscle fibres of dystrophic mdx mice , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  P. Dennis,et al.  Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization , 2008, Autophagy.

[53]  Aleksey A. Porollo,et al.  p62 is a key regulator of nutrient sensing in the mTORC1 pathway. , 2011, Molecular cell.

[54]  V. Hill,et al.  Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. , 2008, Human molecular genetics.

[55]  A. Nordheim,et al.  Human WIPI‐1 puncta‐formation: A novel assay to assess mammalian autophagy , 2007, FEBS letters.

[56]  T. Proikas-Cezanne,et al.  Assessing mammalian autophagy by WIPI-1/Atg18 puncta formation. , 2009, Methods in enzymology.

[57]  Eeva-Liisa Eskelinen,et al.  Autophagy: a lysosomal degradation pathway with a central role in health and disease. , 2009, Biochimica et biophysica acta.

[58]  J. Melki,et al.  Gene targeting restricted to mouse striated muscle lineage. , 1999, Nucleic acids research.

[59]  W. Zong,et al.  Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function , 2012, Proceedings of the National Academy of Sciences.

[60]  R. DePinho,et al.  Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes , 2010, Circulation research.

[61]  H. Stenmark,et al.  Shaping development with ESCRTs , 2011, Nature Cell Biology.

[62]  P. Dennis,et al.  The GST-BHMT assay and related assays for autophagy. , 2009, Methods in enzymology.

[63]  A. Mehta,et al.  Enzyme replacement therapy – a brief history -- Fabry Disease: Perspectives from 5 Years of FOS , 2006 .

[64]  D. Corey,et al.  Regulation of TFEB and V-ATPases by mTORC1 , 2011, The EMBO journal.

[65]  Chang Hwa Jung,et al.  mTOR regulation of autophagy , 2010, FEBS letters.

[66]  I. Nonaka,et al.  Lysosomal myopathies: An excessive build-up in autophagosomes is too much to handle , 2008, Neuromuscular Disorders.

[67]  Hans Ulrich Bergmeyer,et al.  Methods of Enzymatic Analysis , 2019 .