Bacillus subtilis Genome Diversity

ABSTRACT Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

[1]  D. Karamata,et al.  Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. , 2002, Microbiology.

[2]  M. Roberts,et al.  Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. , 1996, International journal of systematic bacteriology.

[3]  Maynard V. Olson,et al.  Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[4]  Identification and molecular characterization of a novel Bacillus strain capable of degrading Tween-80. , 2001, FEMS microbiology letters.

[5]  A. Roberts,et al.  Characterization of the Ends and Target Sites of the Novel Conjugative Transposon Tn5397 from Clostridium difficile: Excision and Circularization Is Mediated by the Large Resolvase, TndX , 2000, Journal of bacteriology.

[6]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Losick,et al.  A major protein component of the Bacillus subtilis biofilm matrix , 2006, Molecular microbiology.

[9]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[10]  D. Ord,et al.  PAUP:Phylogenetic analysis using parsi-mony , 1993 .

[11]  Qing Yang,et al.  Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Roberts,et al.  RECOMBINATION AND MIGRATION RATES IN NATURAL POPULATIONS OF BACILLUS SUBTILIS AND BACILLUS MOJAVENSIS , 1995, Evolution; international journal of organic evolution.

[13]  T. Koshikawa,et al.  Isolation and characterization of four types of plasmids from Bacillus subtilis (natto) , 1977, Journal of bacteriology.

[14]  S. Matsuoka,et al.  Molecular Organization of Intrinsic Restriction and Modification Genes BsuM of Bacillus subtilis Marburg , 2002, Journal of bacteriology.

[15]  R. Losick,et al.  Molecular genetics of sporulation in Bacillus subtilis. , 1996, Annual review of genetics.

[16]  S. Ehrlich,et al.  Genes Involved in Formation of Structured Multicellular Communities by Bacillus subtilis , 2004, Journal of bacteriology.

[17]  Stanley Falkow,et al.  Redefining bacterial populations: a post-genomic reformation , 2002, Nature Reviews Genetics.

[18]  R. Losick,et al.  Targets of the master regulator of biofilm formation in Bacillus subtilis , 2006, Molecular microbiology.

[19]  A. Grossman,et al.  Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Peter F. Hallin,et al.  Ten years of bacterial genome sequencing: comparative-genomics-based discoveries , 2006, Functional & Integrative Genomics.

[21]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[22]  B. Wren,et al.  Comparative phylogenomics of pathogenic bacteria by microarray analysis , 2005, Current Opinion in Microbiology.

[23]  A. Witney,et al.  Microarrays Reveal that Each of the Ten Dominant Lineages of Staphylococcus aureus Has a Unique Combination of Surface-Associated and Regulatory Genes , 2006, Journal of bacteriology.

[24]  D. Karamata,et al.  Pseudo‐allelic relationship between non‐homologous genes concerned with biosynthesis of polyglycerol phosphate and polyglycerol phosphate teichoic acids in Bacillus subtilis strains 168 and W23 , 1989, Molecular microbiology.

[25]  P. Burkholder,et al.  Induced biochemical mutations in Bacillus subtilis. , 1947, American journal of botany.

[26]  Ulrich Dobrindt,et al.  Role of pathogenicity island‐associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536 , 2006, Molecular microbiology.

[27]  H. R. Whiteley,et al.  Bacteriophages of Bacillus subtilis , 1975, Bacteriological reviews.

[28]  Masaya Fujita,et al.  High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis , 2005, Journal of bacteriology.

[29]  M. Roberts,et al.  Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. , 1999, International journal of systematic bacteriology.

[30]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[31]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. R. Whiteley,et al.  Bacteriophages of Bacillus subtilis , 1975, Bacteriological reviews.

[33]  Santiago Garcia-Vallvé,et al.  HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes , 2003, Nucleic Acids Res..

[34]  John F. Heidelberg,et al.  Comparative genomic analysis of Vibrio cholerae: Genes that correlate with cholera endemic and pandemic disease , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  C. B. Thorne TRANSDUCTION IN BACILLUS SUBTILIS , 1962, Journal of bacteriology.

[36]  S. Salzberg,et al.  Whole-Genome Comparison of Mycobacterium tuberculosis Clinical and Laboratory Strains , 2002, Journal of bacteriology.

[37]  Min Zhang,et al.  Genome Diversification in Phylogenetic Lineages I and II of Listeria monocytogenes: Identification of Segments Unique to Lineage II Populations , 2003, Journal of bacteriology.

[38]  G. Dunny,et al.  Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis , 1987, Journal of bacteriology.

[39]  F. Blattner,et al.  Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  G. Sherlock,et al.  A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H. Mizoguchi,et al.  Extensive Genomic Diversity in Pathogenic Escherichia coli and Shigella Strains Revealed by Comparative Genomic Hybridization Microarray , 2004, Journal of bacteriology.

[42]  X. Zhou,et al.  Sexuality in a natural population of bacteria–Bacillus subtilis challenges the clonal paradigm , 1992, Molecular ecology.

[43]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.