Properties of a genetic algorithm equipped with a dynamic penalty function

A genetic algorithm aiming for finding the global minimum and multiple deep local minima of a function exhibiting a complex landscape is studied. A feedback dynamic penalty function is used as a means to direct the algorithm to look for new local minima. The penalty is applied in close vicinity of all minima found before the current search stage. The last one, where the population tends to be trapped in, is treated smoothly. The penalty becomes progressively active there causing that the population progressively transfers outside the trapping area. The method ascertains that, unlike in more classical approaches, after finding the global minimum and a number of local ones on the way, the algorithm continues the exploration and identifies new local minima. Performance tests are described for a task of indexing of a powder diffraction pattern. The presented way of constructing the penalty function is to some extent problem specific, but the applied scheme may be adapted to other global search and optimisation problems, in particular to those requiring identification of multiple deep local minima.

[1]  Pruettha Nanakorn,et al.  An adaptive penalty function in genetic algorithms for structural design optimization , 2001 .

[2]  N. Stander,et al.  A dynamic penalty function method for the solution of structural optimization problems , 1994 .

[3]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[4]  Helio J. C. Barbosa,et al.  A new adaptive penalty scheme for genetic algorithms , 2003, Inf. Sci..

[5]  Saïd Salhi,et al.  A hybrid algorithm for identifying global and local minima when optimizing functions with many minima , 2004, Eur. J. Oper. Res..

[6]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[7]  Eric S. Fraga,et al.  Process design optimisation using embedded hybrid visualisation and data analysis techniques within a genetic algorithm optimisation framework , 2004 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[10]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[11]  W. Paszkowicz,et al.  Application of optimization to powder-pattern indexing , 1987 .

[12]  M. Pirlot General local search methods , 1996 .

[13]  Roy L. Johnston,et al.  A new approach for indexing powder diffraction data based on whole‐profile fitting and global optimization using a genetic algorithm , 1999 .

[14]  Ruhul A. Sarker,et al.  A genetic algorithm for solving economic lot size scheduling problem , 2002 .

[15]  Wojciech Paszkowicz,et al.  Properties of a genetic algorithm extended by a random self-learning operator and asymmetric mutations: A convergence study for a task of powder-pattern indexing , 2006 .

[16]  Melik Dölen,et al.  Discrete parameter-nonlinear constrained optimisation of a gear train using genetic algorithms , 2005, Int. J. Comput. Appl. Technol..

[17]  Mitsuo Gen,et al.  A survey of penalty techniques in genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[18]  Wojciech Paszkowicz On the estimation of the unit-cell volume from powder diffraction data , 1987 .

[19]  W. Paszkowicz,et al.  Application of the Smooth Genetic Algorithm for Indexing Powder Patterns – Tests for the Orthorhombic System , 1996 .

[20]  Lutgarde M. C. Buydens,et al.  Penalty and repair functions for constraint handling in the genetic algorithm methodology , 1996 .

[21]  Marcelo A. Moret,et al.  Algorithm for multiple minima search , 1998 .

[22]  Patrick Siarry,et al.  A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global optimization of multiminima functions , 2005, Eur. J. Oper. Res..

[23]  Vassilios Petridis,et al.  Varying Fitness Functions in Genetic Algorithms: Studying the Rate of Increase of the Dynamic Penalty Terms , 1998, PPSN.

[24]  Enrico Zio,et al.  Basics of genetic algorithms optimization for RAMS applications , 2006, Reliab. Eng. Syst. Saf..

[25]  Frederick R. Manby,et al.  Predatory genetic algorithms , 1998 .

[26]  Nelson F. F. Ebecken,et al.  Optimization of mass concrete construction using genetic algorithms , 2004 .

[27]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[28]  Elisaveta G. Shopova,et al.  BASIC - A genetic algorithm for engineering problems solution , 2006, Comput. Chem. Eng..

[29]  Ralf Östermark,et al.  A multipurpose parallel genetic hybrid algorithm for non-linear non-convex programming problems , 2004, Eur. J. Oper. Res..

[30]  Wang Fuli,et al.  Feedback penalty function based on genetic algorithm , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[31]  M. N. Vrahatis,et al.  Objective function “stretching” to alleviate convergence to local minima , 2001 .

[32]  Charles Raoul Shebanie An Integrated, Evolutionary Approach to Facility Layout and Detailed Design , 2004 .

[33]  David W. Coit,et al.  Adaptive Penalty Methods for Genetic Optimization of Constrained Combinatorial Problems , 1996, INFORMS J. Comput..

[34]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[35]  Lutgarde M. C. Buydens,et al.  Powder pattern indexing using the weighted crosscorrelation and genetic algorithms , 2003, J. Comput. Chem..

[36]  David W. Coit,et al.  Exploiting Tabu Search Memory in Constrained Problems , 2004, INFORMS J. Comput..

[37]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[38]  Elmer P. Dadios,et al.  Genetic algorithm with adaptive and dynamic penalty functions for the selection of cleaner production measures: a constrained optimization problem , 2006 .

[39]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[40]  Sofía Carlos,et al.  Constrained optimization of test intervals using a steady-state genetic algorithm , 2000, Reliab. Eng. Syst. Saf..

[41]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..