De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets

The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD’s first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD’s performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.

[1]  Sabine Van Huffel,et al.  Level choice in truncated total least squares , 2007, Comput. Stat. Data Anal..

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[4]  L. Gleser Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results , 1981 .

[5]  John C. Griffin On the control of a canonical separated flow , 2013 .

[6]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Sabine Van Huffel,et al.  The total least squares problem , 1993 .

[8]  Paul J. Goulart,et al.  Optimal mode decomposition for high dimensional systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[9]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[10]  Vladimir M. Dulin,et al.  Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions , 2014 .

[11]  Joshua L. Proctor,et al.  Discovering dynamic patterns from infectious disease data using dynamic mode decomposition , 2015, International health.

[12]  H. Akaike A new look at the statistical model identification , 1974 .

[13]  David R. Cox,et al.  Time Series Analysis , 2012 .

[14]  Heni Ben Amor,et al.  Estimation of perturbations in robotic behavior using dynamic mode decomposition , 2015, Adv. Robotics.

[15]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[16]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[17]  Thomas Peters,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn., by P. Holmes , 2012 .

[18]  Martin Fischer,et al.  DECOMPOSING BUILDING SYSTEM DATA FOR MODEL VALIDATION AND ANALYSIS USING THE KOOPMAN OPERATOR , 2010 .

[19]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[20]  James R. Bunch,et al.  Perturbation theory for orthogonal projection methods with applications to least squares and total least squares , 1996 .

[21]  Onofrio Semeraro,et al.  Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes , 2012 .

[22]  K. Hasselmann PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns , 1988 .

[23]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[24]  Matthew O. Williams,et al.  A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.

[25]  Ioannis G. Kevrekidis,et al.  Extending Dynamic Mode Decomposition: A Data--Driven Approximation of the Koopman Operator , 2014 .

[26]  Clarence W. Rowley,et al.  Spectral analysis of fluid flows using sub-Nyquist-rate PIV data , 2014, Experiments in Fluids.

[27]  Damon Honnery,et al.  Experimental investigation of nonlinear instabilities in annular liquid sheets , 2012, Journal of Fluid Mechanics.

[28]  B. Wieneke PIV uncertainty quantification from correlation statistics , 2015 .

[29]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[30]  Damon Honnery,et al.  An error analysis of the dynamic mode decomposition , 2011, Experiments in Fluids.

[31]  E. Davison,et al.  On "A method for simplifying linear dynamic systems" , 1966 .

[32]  A. Krall Applied Analysis , 1986 .

[33]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[34]  Mehdi Ghommem,et al.  Real-time tumor ablation simulation based on the dynamic mode decomposition method. , 2014, Medical physics.

[35]  Yoshihiko Susuki,et al.  Nonlinear Koopman modes and power system stability assessment without models , 2014, 2014 IEEE PES General Meeting | Conference & Exposition.

[36]  C. Chui,et al.  Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .

[37]  James R. Bunch,et al.  Orthogonal projection and total least squares , 1995, Numer. Linear Algebra Appl..

[38]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[40]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[41]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[42]  Sabine Van Huffel,et al.  On the accuracy of total least squares and least squares techniques in the presence of errors on all data , 1989, Autom..

[43]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[44]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[45]  Barton L. Smith,et al.  Uncertainty on PIV mean and fluctuating velocity due to bias and random errors , 2013 .

[46]  S. Bagheri Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum , 2014 .

[47]  Gene H. Golub,et al.  Matrix computations , 1983 .

[48]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[49]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[50]  F. Guéniat,et al.  A dynamic mode decomposition approach for large and arbitrarily sampled systems , 2015 .

[51]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[52]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[53]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[54]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[55]  Nina F. Thornhill,et al.  A Dynamic Mode Decomposition Framework for Global Power System Oscillation Analysis , 2015, IEEE Transactions on Power Systems.

[56]  P. Goulart,et al.  Optimal mode decomposition for unsteady flows , 2013, Journal of Fluid Mechanics.

[57]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[58]  Heni Ben Amor,et al.  Dynamic Mode Decomposition for perturbation estimation in human robot interaction , 2014, The 23rd IEEE International Symposium on Robot and Human Interactive Communication.

[59]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[60]  Matthew O. Williams,et al.  A kernel-based method for data-driven koopman spectral analysis , 2016 .

[61]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[62]  Michael D. Zoltowski Generalized Minimum Norm And Constrained Total Least Squares With Applications To Array Signal Processing , 1988, Optics & Photonics.

[63]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[64]  J. Neumann Proof of the Quasi-Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[66]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[67]  Peter J. Schmid,et al.  Application of the dynamic mode decomposition to experimental data , 2011 .

[68]  Gene H. Golub,et al.  Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..

[69]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[70]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[71]  Pavlos P. Vlachos,et al.  A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements , 2012 .