A 90–100-GHz Phased-Array Transmit/Receive Silicon RFIC Module With Built-In Self-Test

This paper presents the first built-in self-test system (BIST) for W-band transmit-receive phased-array modules. Low-loss high-isolation switches are attached to the RF input and output ports using λ/4 transmission-line sections, which result in a high shunt impedance when the BIST is disabled and minimal penalty in additional loss. A W-band in-phase/quadrature down-conversion mixer/receiver with 0.5-dB amplitude and 4°-5° phase imbalance at 90-100 GHz is also implemented on-chip and is used as an on-chip vector network analyzer. The BIST allows the measurement of the normalized S21 in both transmit and receive modes with high accuracy (4-bit phase response, 0.5-dB amplitude variation) at 90-100 GHz without any external calibration. The BIST also results in a normalized frequency response that agrees well with the measured S-parameters at 90-100 GHz.

[1]  M. Ruberto,et al.  A CMOS Bidirectional 32-Element Phased-Array Transceiver at 60 GHz With LTCC Antenna , 2012, IEEE Transactions on Microwave Theory and Techniques.

[2]  Gabriel M. Rebeiz,et al.  A 76–84-GHz 16-Element Phased-Array Receiver With a Chip-Level Built-In Self-Test System , 2013, IEEE Transactions on Microwave Theory and Techniques.

[3]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[4]  Gabriel M. Rebeiz,et al.  A 44–46-GHz 16-Element SiGe BiCMOS High-Linearity Transmit/Receive Phased Array , 2012, IEEE Transactions on Microwave Theory and Techniques.

[5]  James Parker,et al.  A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[6]  Ruey-Beei Wu,et al.  60-GHz Four-Element Phased-Array Transmit/Receive System-in-Package Using Phase Compensation Techniques in 65-nm Flip-Chip CMOS Process , 2012, IEEE Transactions on Microwave Theory and Techniques.

[7]  Gabriel M. Rebeiz,et al.  75–85 GHz flip-chip phased array RFIC with simultaneous 8-transmit and 8-receive paths for automotive radar applications , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[8]  I. Sarkas,et al.  A Fundamental Frequency 120-GHz SiGe BiCMOS Distance Sensor With Integrated Antenna , 2012, IEEE Transactions on Microwave Theory and Techniques.

[9]  Gabriel M. Rebeiz,et al.  A 108–112 GHz 4×4 wafer-scale phased array transmitter with high-efficiency on-chip antennas , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[10]  Gabriel M. Rebeiz,et al.  A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-$\mu$ m SiGe BiCMOS Technology , 2009, IEEE Journal of Solid-State Circuits.

[11]  H. Bruce Wallace An application of advanced SiGe to millimeter-wave phased arrays , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[12]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[13]  Gabriel M. Rebeiz,et al.  A Phased Array RFIC With Built-In Self-Test Capabilities , 2012, IEEE Transactions on Microwave Theory and Techniques.

[14]  Chris Hillman,et al.  A 16-element transmit/receive Q-band electronically steerable subarray tile , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[15]  Gabriel M. Rebeiz,et al.  A 90–100-GHz 4 $\times$ 4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities , 2013, IEEE Transactions on Microwave Theory and Techniques.