Numerical Methods for Parameter Estimation in Poisson Data Inversion

In a regularized approach to Poisson data inversion, the problem is reduced to the minimization of an objective function which consists of two terms: a data-fidelity function, related to a generalized Kullback–Leibler divergence, and a regularization function expressing a priori information on the unknown image. This second function is multiplied by a parameter $$\beta $$β, sometimes called regularization parameter, which must be suitably estimated for obtaining a sensible solution. In order to estimate this parameter, a discrepancy principle has been recently proposed, that implies the minimization of the objective function for several values of $$\beta $$β. Since this approach can be computationally expensive, it has also been proposed to replace it with a constrained minimization, the constraint being derived from the discrepancy principle. In this paper we intend to compare the two approaches from the computational point of view. In particular, we propose a secant-based method for solving the discrepancy equation arising in the first approach; when this root-finding algorithm can be combined with an efficient solver of the inner minimization problems, the first approach can be competitive and sometimes faster than the second one.

[1]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[2]  Alessandra Staglianò,et al.  Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle , 2011 .

[3]  Valeria Ruggiero,et al.  On the Uniqueness of the Solution of Image Reconstruction Problems with Poisson Data , 2010 .

[4]  M. Bertero,et al.  Nonnegative least-squares image deblurring: improved gradient projection approaches , 2010 .

[5]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[6]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[7]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[8]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[9]  Luca Zanni,et al.  A discrepancy principle for Poisson data , 2010 .

[10]  Laure Blanc-Féraud,et al.  Sparse Poisson Noisy Image Deblurring , 2012, IEEE Transactions on Image Processing.

[11]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[12]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[13]  Marco Prato,et al.  A new general framework for gradient projection methods , 2014 .

[14]  M. Pullan CONVEX ANALYSIS AND MINIMIZATION ALGORITHMS Volumes I and II (Comprehensive Studies in Mathematics 305, 306) , 1995 .

[15]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[16]  S. Bonettini,et al.  Nonnegative image reconstruction from sparse Fourier data: a new deconvolution algorithm , 2010 .

[17]  M. Bertero,et al.  Efficient gradient projection methods for edge-preserving removal of Poisson noise , 2009 .

[18]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[21]  Caroline Chaux,et al.  ML estimation of wavelet regularization hyperparameters in inverse problems , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  Roger Fletcher,et al.  A limited memory steepest descent method , 2011, Mathematical Programming.

[23]  Thomas J. Asaki,et al.  A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.

[24]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[25]  Gabriele Steidl,et al.  Homogeneous Penalizers and Constraints in Convex Image Restoration , 2013, Journal of Mathematical Imaging and Vision.

[26]  B. He,et al.  Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .

[27]  S. Wang,et al.  Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems , 2001 .

[28]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[29]  Luca Zanni,et al.  Corrigendum: Efficient gradient projection methods for edge-preserving removal of Poisson noise , 2009 .

[30]  R. Chan,et al.  Minimization and parameter estimation for seminorm regularization models with I-divergence constraints , 2013 .

[31]  Marco Prato,et al.  A New Semiblind Deconvolution Approach for Fourier-Based Image Restoration: An Application in Astronomy , 2013, SIAM J. Imaging Sci..

[32]  M. E. Daube-Witherspoon,et al.  An iterative image space reconstruction algorithm suitable for volume ECT.IEEE Trans. , 1986 .

[33]  L. Zanni,et al.  New adaptive stepsize selections in gradient methods , 2008 .

[34]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[35]  Roger Fletcher,et al.  New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds , 2006, Math. Program..

[36]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[37]  Laure Blanc-Féraud,et al.  Two constrained formulations for deblurring Poisson noisy images , 2011, 2011 18th IEEE International Conference on Image Processing.

[38]  L. Zanni,et al.  A scaled gradient projection method for constrained image deblurring , 2008 .

[39]  José M. Bioucas-Dias,et al.  Frame-based deconvolution of Poissonian images using alternating direction optimization , 2010, 2010 IEEE International Conference on Image Processing.

[40]  Luca Zanni,et al.  Limited-memory scaled gradient projection methods for real-time image deconvolution in microscopy , 2014, Commun. Nonlinear Sci. Numer. Simul..

[41]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[42]  Gilles Aubert,et al.  Blind restoration of confocal microscopy images in presence of a depth-variant blur and Poisson noise , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[43]  L. Zanni,et al.  Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes , 2012, 1210.2258.

[44]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[45]  G. Zanghirati,et al.  Towards real-time image deconvolution: application to confocal and STED microscopy , 2013, Scientific Reports.

[46]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[47]  Johnathan M. Bardsley,et al.  Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation , 2009 .

[48]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[49]  Luca Zanni,et al.  Scaling techniques for gradient projection-type methods in astronomical image deblurring , 2013, Int. J. Comput. Math..

[50]  H. Lantéri,et al.  Penalized maximum likelihood image restoration with positivity constraints:multiplicative algorithms , 2002 .