Numerical Methods for Parameter Estimation in Poisson Data Inversion
暂无分享,去创建一个
Valeria Ruggiero | Luca Zanni | Mario Bertero | Alessandro Benfenati | M. Bertero | L. Zanni | V. Ruggiero | A. Benfenati
[1] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[2] Alessandra Staglianò,et al. Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle , 2011 .
[3] Valeria Ruggiero,et al. On the Uniqueness of the Solution of Image Reconstruction Problems with Poisson Data , 2010 .
[4] M. Bertero,et al. Nonnegative least-squares image deblurring: improved gradient projection approaches , 2010 .
[5] M. Bertero,et al. Image deblurring with Poisson data: from cells to galaxies , 2009 .
[6] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[7] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[8] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[9] Luca Zanni,et al. A discrepancy principle for Poisson data , 2010 .
[10] Laure Blanc-Féraud,et al. Sparse Poisson Noisy Image Deblurring , 2012, IEEE Transactions on Image Processing.
[11] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[12] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[13] Marco Prato,et al. A new general framework for gradient projection methods , 2014 .
[14] M. Pullan. CONVEX ANALYSIS AND MINIMIZATION ALGORITHMS Volumes I and II (Comprehensive Studies in Mathematics 305, 306) , 1995 .
[15] L. Shepp,et al. Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.
[16] S. Bonettini,et al. Nonnegative image reconstruction from sparse Fourier data: a new deconvolution algorithm , 2010 .
[17] M. Bertero,et al. Efficient gradient projection methods for edge-preserving removal of Poisson noise , 2009 .
[18] B. V. Dean,et al. Studies in Linear and Non-Linear Programming. , 1959 .
[19] Gene H. Golub,et al. Matrix computations , 1983 .
[20] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .
[21] Caroline Chaux,et al. ML estimation of wavelet regularization hyperparameters in inverse problems , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[22] Roger Fletcher,et al. A limited memory steepest descent method , 2011, Mathematical Programming.
[23] Thomas J. Asaki,et al. A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.
[24] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[25] Gabriele Steidl,et al. Homogeneous Penalizers and Constraints in Convex Image Restoration , 2013, Journal of Mathematical Imaging and Vision.
[26] B. He,et al. Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .
[27] S. Wang,et al. Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems , 2001 .
[28] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[29] Luca Zanni,et al. Corrigendum: Efficient gradient projection methods for edge-preserving removal of Poisson noise , 2009 .
[30] R. Chan,et al. Minimization and parameter estimation for seminorm regularization models with I-divergence constraints , 2013 .
[31] Marco Prato,et al. A New Semiblind Deconvolution Approach for Fourier-Based Image Restoration: An Application in Astronomy , 2013, SIAM J. Imaging Sci..
[32] M. E. Daube-Witherspoon,et al. An iterative image space reconstruction algorithm suitable for volume ECT.IEEE Trans. , 1986 .
[33] L. Zanni,et al. New adaptive stepsize selections in gradient methods , 2008 .
[34] Gabriele Steidl,et al. Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..
[35] Roger Fletcher,et al. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds , 2006, Math. Program..
[36] William H. Richardson,et al. Bayesian-Based Iterative Method of Image Restoration , 1972 .
[37] Laure Blanc-Féraud,et al. Two constrained formulations for deblurring Poisson noisy images , 2011, 2011 18th IEEE International Conference on Image Processing.
[38] L. Zanni,et al. A scaled gradient projection method for constrained image deblurring , 2008 .
[39] José M. Bioucas-Dias,et al. Frame-based deconvolution of Poissonian images using alternating direction optimization , 2010, 2010 IEEE International Conference on Image Processing.
[40] Luca Zanni,et al. Limited-memory scaled gradient projection methods for real-time image deconvolution in microscopy , 2014, Commun. Nonlinear Sci. Numer. Simul..
[41] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[42] Gilles Aubert,et al. Blind restoration of confocal microscopy images in presence of a depth-variant blur and Poisson noise , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[43] L. Zanni,et al. Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes , 2012, 1210.2258.
[44] L. Lucy. An iterative technique for the rectification of observed distributions , 1974 .
[45] G. Zanghirati,et al. Towards real-time image deconvolution: application to confocal and STED microscopy , 2013, Scientific Reports.
[46] Donald Geman,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .
[47] Johnathan M. Bardsley,et al. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation , 2009 .
[48] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[49] Luca Zanni,et al. Scaling techniques for gradient projection-type methods in astronomical image deblurring , 2013, Int. J. Comput. Math..
[50] H. Lantéri,et al. Penalized maximum likelihood image restoration with positivity constraints:multiplicative algorithms , 2002 .