Quasi-Two-Dimensional Magnetism in Co-Based Shandites

We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2−xInxS2 (0 ≤ x ≤ 2) and Co3−yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic–nonmagnetic quantum phase transition is found around xc ∼ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.

[1]  H. Nakamura,et al.  Single crystal growth and characterization of kagomé-lattice shandites Co3Sn2−xInxS2 , 2015 .

[2]  R. Pöttgen,et al.  Tuneable anisotropy and magnetism in Sn2Co3S2-xSex - probed by (119)Sn Mößbauer spectroscopy and DFT studies. , 2015, Dalton transactions.

[3]  J. Jumas,et al.  Interplay of Metal-Atom Ordering, Fermi Level Tuning, and Thermoelectric Properties in Cobalt Shandites Co3M2S2 (M = Sn, In) , 2015 .

[4]  Y. Kamihara,et al.  Magnetic properties of shandite-phase Co3-xFexSn2S2 (x = 0-1.0) obtained with high pressure synthesis , 2015 .

[5]  T. Söhnel,et al.  Origin and effect of In–Sn ordering in InSnCo3S2: a neutron diffraction and DFT study , 2014 .

[6]  Z. Liu,et al.  Mn-doping-induced itinerant-electron ferromagnetism in Cr[2]GeC , 2014 .

[7]  F. Schappacher,et al.  Half Antiperovskites VI: On the Substitution Effects in Shandites InxSn2–xCo3S2 †‡ , 2014 .

[8]  M. Fang,et al.  Magnetic Properties of Layered Itinerant Electron Ferromagnet Fe3GeTe2 , 2013 .

[9]  F. Schappacher,et al.  Ferromagnetic ordering and half-metallic state of Sn2Co3S2 with the shandite-type structure , 2013 .

[10]  H. Katori,et al.  Itinerant electronic ferromagnetism in Sr 2 ScO 3 CoAs with largely spaced CoAs conduction layers , 2013 .

[11]  Y. Kamihara,et al.  Magnetic properties of shandite-type Co3Sn2S2-xSex , 2013 .

[12]  A. Powell,et al.  Co3M2S2 (M = Sn, In) shandites as tellurium-free thermoelectrics , 2013 .

[13]  Y. Takahashi Spin Fluctuation Theory of Itinerant Electron Magnetism , 2013 .

[14]  F. Schappacher,et al.  Effect of In–Sn Ordering on Semiconducting Properties in InSnCo3S2 – X‐ray, 119Sn Mößbauer Spectroscopy, and DFT Studies , 2013 .

[15]  M. Fujioka,et al.  The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice , 2012, 1211.4467.

[16]  P. Canfield,et al.  Development of viable solutions for the synthesis of sulfur bearing single crystals , 2012 .

[17]  P. Canfield,et al.  Nematic Electronic Structure in the “Parent” State of the Iron-Based Superconductor Ca(Fe1–xCox)2As2 , 2010, Science.

[18]  C. Michioka,et al.  Spectroscopic Study of 75As and 139La NMR on Layered Structure Ferromagnet LaCoAsO , 2009, 0911.4166.

[19]  S. A. Grigera,et al.  Heavy d-electron quasiparticle interference and real-space electronic structure of Sr3Ru2O7 , 2009, 0911.2913.

[20]  T. Kamiya,et al.  Two-Dimensional Spin Dynamics in the Itinerant Ferromagnet LaCoPO Revealed by Magnetization and 31P-NMR Measurements , 2009, 0909.5641.

[21]  A. Sefat,et al.  Contrasting spin dynamics between underdoped and overdoped Ba(Fe1-xCox)2As2. , 2009, Physical review letters.

[22]  K. Yoshimura,et al.  Anomalous magnetization in the layered itinerant ferromagnet LaCoAsO , 2009 .

[23]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[24]  H. Mook,et al.  Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.

[25]  Philipp Gegenwart,et al.  Quantum criticality in heavy-fermion metals , 2007, 0712.2045.

[26]  R. Weihrich,et al.  Half Antiperovskites. III. Crystallographic and Electronic Structure Effects in Sn2−xInxCo3S2† , 2006 .

[27]  H. Okabe,et al.  Ni substitution effect on magnetic and transport properties in metallic ferromagnet Co3Sn2S2 , 2006 .

[28]  R. Weihrich,et al.  Halbantiperowskite: Zur Struktur der Shandite M3/2AS (M = Co, Ni; A = In, Sn) und ihren Typ‐Antitypbeziehungen , 2005 .

[29]  R. Weihrich,et al.  Geordnet teilbesetzte Antiperowskite M3Bi2S2 (M = Rh, Pd) , 2004 .

[30]  Sachdev,et al.  Quantum criticality: competing ground states in low dimensions , 2000, Science.

[31]  H. Löhneysen,et al.  TWO-DIMENSIONAL FLUCTUATIONS AT THE QUANTUM-CRITICAL POINT OF CECU6-XAUX , 1998, cond-mat/9802086.

[32]  Y. Takahashi Spin-fluctuation theory of quasi-two-dimensional itinerant-electron ferromagnets , 1997 .

[33]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[34]  K. Shimizu,et al.  Effect of Spin Fluctuations on Magnetic Properties and Thermal Expansion in Pseudobinary System FexCo1-xSi , 1990 .

[35]  W. Pickett Electronic structure of the high-temperature oxide superconductors , 1989 .

[36]  C. Torardi,et al.  Crystal Structure of Tl2Ba2Ca2Cu3O10, a 125 K Superconductor , 1988, Science.

[37]  M. Takigawa,et al.  NMR Study of Weakly Itinerant Ferromagnetic Y(Co1-xAlx)2 , 1987 .

[38]  Y. Takahashi On the Origin of the Curie-Weiss Law of the Magnetic Susceptibility in Itinerant Electron Ferromagnetism , 1986 .

[39]  A. Arrott Criterion for Ferromagnetism from Observations of Magnetic Isotherms , 1957 .

[40]  H. Nakamura,et al.  Structure and magnetic properties of flux grown single crystals of Co(3−x)FexSn(2)S(2) shandites , 2016 .

[41]  R. Weihrich,et al.  In Search for Novel Sn2Co3S2-based Half-metal Ferromagnets , 2014 .

[42]  V. Eyert,et al.  Structure, ordering, and bonding of half antiperovskites: PbNi3/2S and BiPd3/2S , 2007 .

[43]  R. Weihrich,et al.  Halbantiperowskite II: zur Kristallstruktur des Pd3Bi2S2 , 2006 .