The multitasking organ: recent insights into skin immune function.

[1]  Natalie A. Roberts,et al.  Exogenous Stimuli Maintain Intraepithelial Lymphocytes via Aryl Hydrocarbon Receptor Activation , 2011, Cell.

[2]  V. Jala,et al.  Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. , 2011, Immunity.

[3]  L. Honigberg,et al.  Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q , 2011, PloS one.

[4]  J. Hengstler,et al.  Aryl Hydrocarbon Receptor Is Critical for Homeostasis of Invariant γδ T Cells in the Murine Epidermis , 2011, The Journal of Immunology.

[5]  Thomas Gebhardt,et al.  Different patterns of peripheral migration by memory CD4+ and CD8+ T cells , 2011, Nature.

[6]  A. Hayday,et al.  Identification of a Novel Proinflammatory Human Skin-Homing Vγ9Vδ2 T Cell Subset with a Potential Role in Psoriasis , 2011, The Journal of Immunology.

[7]  T. Jakob,et al.  Mechanisms of chemical‐induced innate immunity in allergic contact dermatitis , 2011, Allergy.

[8]  J. Berman,et al.  Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. , 2011, Immunity.

[9]  A. Bruce,et al.  Mast Cells and Neutrophils Release IL-17 through Extracellular Trap Formation in Psoriasis , 2011, The Journal of Immunology.

[10]  Clare L. Bennett,et al.  Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. , 2011, Blood.

[11]  L. Lefrançois,et al.  Regional and mucosal memory T cells , 2011, Nature Immunology.

[12]  Elizabeth E Gray,et al.  Cutting Edge: Identification of a Motile IL-17–Producing γδ T Cell Population in the Dermis , 2011, The Journal of Immunology.

[13]  C. Abraham,et al.  Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses , 2011, Proceedings of the National Academy of Sciences.

[14]  V. Hornung,et al.  Cytosolic DNA Triggers Inflammasome Activation in Keratinocytes in Psoriatic Lesions , 2011, Science Translational Medicine.

[15]  D. Artis,et al.  Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22 , 2011, Nature Immunology.

[16]  M. Veldhoen,et al.  External influences on the immune system via activation of the aryl hydrocarbon receptor. , 2011, Seminars in immunology.

[17]  C. Bodemer,et al.  Chronic Mucocutaneous Candidiasis in Humans with Inborn Errors of Interleukin-17 Immunity , 2011, Science.

[18]  J. Segre,et al.  The skin microbiome , 2011, Nature Reviews Microbiology.

[19]  K. Peris,et al.  The IL23R R381Q Gene Variant Protects against Immune-Mediated Diseases by Impairing IL-23-Induced Th17 Effector Response in Humans , 2011, PloS one.

[20]  L. Ng,et al.  Cutaneous immunosurveillance by self-renewing dermal γδ T cells , 2011, The Journal of experimental medicine.

[21]  D. Campbell,et al.  Phenotypical and functional specialization of FOXP3+ regulatory T cells , 2011, Nature Reviews Immunology.

[22]  F. Nestle,et al.  Harnessing dendritic cells in inflammatory skin diseases , 2011, Seminars in immunology.

[23]  R. Coffman,et al.  Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9 , 2010, The Journal of experimental medicine.

[24]  A. Di Nardo,et al.  Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons , 2010, The Journal of experimental medicine.

[25]  S. Yuspa,et al.  Gene from a Psoriasis Susceptibility Locus Primes the Skin for Inflammation , 2010, Science Translational Medicine.

[26]  P. Stoitzner,et al.  Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity. , 2010, The Journal of investigative dermatology.

[27]  D. Kaplan In vivo function of Langerhans cells and dermal dendritic cells. , 2010, Trends in immunology.

[28]  Chrysanthi Ainali,et al.  A Systems Model for Immune Cell Interactions Unravels the Mechanism of Inflammation in Human Skin , 2010, PLoS Comput. Biol..

[29]  T. Mcclanahan,et al.  Cutting Edge: A Critical Functional Role for IL-23 in Psoriasis , 2010, The Journal of Immunology.

[30]  A. Blauvelt,et al.  IL-23 and IL-17A, but Not IL-12 and IL-22, Are Required for Optimal Skin Host Defense against Candida albicans , 2010, The Journal of Immunology.

[31]  Matti Pirinen,et al.  A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1 , 2010, Nature Genetics.

[32]  P. Tak,et al.  Effects of AIN457, a Fully Human Antibody to Interleukin-17A, on Psoriasis, Rheumatoid Arthritis, and Uveitis , 2010, Science Translational Medicine.

[33]  L. French,et al.  Interleukin-1, inflammasomes and the skin. , 2010, European journal of cell biology.

[34]  Thomas Vogl,et al.  Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel , 2010, Nature Immunology.

[35]  C. Tato,et al.  Innate IL-17-producing cells: the sentinels of the immune system , 2010, Nature Reviews Immunology.

[36]  J. Jameson,et al.  Epidermal T Cells and Wound Healing , 2010, The Journal of Immunology.

[37]  B. Malissen,et al.  Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. , 2010, The Journal of allergy and clinical immunology.

[38]  S. Garcovich,et al.  IL-17 Amplifies Human Contact Hypersensitivity by Licensing Hapten Nonspecific Th1 Cells to Kill Autologous Keratinocytes , 2010, The Journal of Immunology.

[39]  K. Murphy,et al.  Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells , 2010, The Journal of experimental medicine.

[40]  E. Pietras,et al.  IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. , 2010, The Journal of clinical investigation.

[41]  J. Roes,et al.  Differential Roles of Macrophages in Diverse Phases of Skin Repair , 2010, The Journal of Immunology.

[42]  S. Akira,et al.  Pattern Recognition Receptors and Inflammation , 2010, Cell.

[43]  R. Steinman,et al.  Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. , 2010, The Journal of investigative dermatology.

[44]  N. Romani,et al.  Langerhans cells and more: langerin‐expressing dendritic cell subsets in the skin , 2010, Immunological reviews.

[45]  R. Clark Skin-resident T cells: the ups and downs of on site immunity. , 2010, The Journal of investigative dermatology.

[46]  B. Strober,et al.  Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. , 2010, The New England journal of medicine.

[47]  E. Devilard,et al.  CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells , 2010, The Journal of experimental medicine.

[48]  J. Albina,et al.  The phenotype of murine wound macrophages , 2010, Journal of leukocyte biology.

[49]  V. Kuchroo,et al.  Interleukin-17 and type 17 helper T cells. , 2009, The New England journal of medicine.

[50]  S. Durham,et al.  Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. , 2009, The Journal of clinical investigation.

[51]  W. Heath,et al.  Dendritic cell subsets in primary and secondary T cell responses at body surfaces , 2009, Nature Immunology.

[52]  T. Koh,et al.  Selective and specific macrophage ablation is detrimental to wound healing in mice. , 2009, The American journal of pathology.

[53]  Mayte Suárez-Fariñas,et al.  Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. , 2009, The Journal of allergy and clinical immunology.

[54]  M. Shlomchik,et al.  Langerhans Cells Suppress Contact Hypersensitivity Responses Via Cognate CD4 Interaction and Langerhans Cell-Derived IL-101 , 2009, The Journal of Immunology.

[55]  Frank O. Nestle,et al.  Skin immune sentinels in health and disease , 2009, Nature Reviews Immunology.

[56]  M. Lutz,et al.  Induction of peripheral CD4+ T‐cell tolerance and CD8+ T‐cell cross‐tolerance by dendritic cells , 2009, European journal of immunology.

[57]  M. Gilliet,et al.  Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8 , 2009, The Journal of experimental medicine.

[58]  D. Jarrossay,et al.  Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells , 2009, Nature Immunology.

[59]  H. Spits,et al.  Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells , 2009, Nature Immunology.

[60]  Frank O. Nestle,et al.  Mechanisms of Disease: Psoriasis. , 2009 .

[61]  A. Waisman,et al.  A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. , 2009, The American journal of pathology.

[62]  J. Nicolas,et al.  Allergic and irritant contact dermatitis. , 2009, European journal of dermatology : EJD.

[63]  F. Nestle,et al.  The IL-23/Th17 axis in the immunopathogenesis of psoriasis. , 2009, The Journal of investigative dermatology.

[64]  M. Gilliet,et al.  Plasmacytoid dendritic cells in the skin: to sense or not to sense nucleic acids. , 2009, Seminars in immunology.

[65]  Thomas Gebhardt,et al.  Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus , 2009, Nature Immunology.

[66]  A. Brooks,et al.  Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells , 2009, Nature Immunology.

[67]  F. Geissmann,et al.  Blood monocytes: development, heterogeneity, and relationship with dendritic cells. , 2009, Annual review of immunology.

[68]  J. Kohlmeier,et al.  Migration, maintenance and recall of memory T cells in peripheral tissues , 2009, Nature Reviews Immunology.

[69]  Lisa C. Zaba,et al.  Resident and "inflammatory" dendritic cells in human skin. , 2009, The Journal of investigative dermatology.

[70]  Pui-Yan Kwok,et al.  Genomewide Scan Reveals Association of Psoriasis with IL-23 and NF-κB Pathways , 2008, Nature Genetics.

[71]  F. Ginhoux,et al.  Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells , 2008, Nature Reviews Immunology.

[72]  María López-Bravo,et al.  In vivo induction of immune responses to pathogens by conventional dendritic cells. , 2008, Immunity.

[73]  H. Ueno,et al.  Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. , 2008, Immunity.

[74]  A. Cavani T regulatory cells in contact hypersensitivity , 2008, Current opinion in allergy and clinical immunology.

[75]  A. Fischer,et al.  Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells , 2008, The Journal of experimental medicine.

[76]  Lisa C. Zaba,et al.  Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. , 2008, The Journal of investigative dermatology.

[77]  M. Tenenhaus,et al.  Role of Human Skin Resident T Cells in Wound Healing , 2008 .

[78]  L. Fouser,et al.  IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. , 2008, The Journal of clinical investigation.

[79]  N. Van Rooijen,et al.  Dendritic Cell-Induced Memory T Cell Activation in Nonlymphoid Tissues , 2008, Science.

[80]  Lisa C. Zaba,et al.  Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses , 2007, The Journal of experimental medicine.

[81]  F. Ginhoux,et al.  Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state , 2007, The Journal of experimental medicine.

[82]  K. Hogquist,et al.  Identification of a novel population of Langerin+ dendritic cells , 2007, The Journal of experimental medicine.

[83]  E. Devilard,et al.  The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells , 2007, The Journal of experimental medicine.

[84]  I. Mellman,et al.  Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide , 2007, Nature.

[85]  Kathleen M. Smith,et al.  Development, cytokine profile and function of human interleukin 17–producing helper T cells , 2007, Nature Immunology.

[86]  O. Boyman,et al.  α1β1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis , 2007, Nature Medicine.

[87]  Frank O. Nestle,et al.  Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis , 2007, Human Genetics.

[88]  James T. Elder,et al.  Mouse models of psoriasis. , 2007, The Journal of investigative dermatology.

[89]  B. León,et al.  Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. , 2007, Immunity.

[90]  A. Wald,et al.  Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation , 2007, The Journal of experimental medicine.

[91]  Junliang Pan,et al.  DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27 , 2007, Nature Immunology.

[92]  P. Valdez,et al.  Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis , 2007, Nature.

[93]  O. Boyman,et al.  The pathogenic role of tissue-resident immune cells in psoriasis. , 2007, Trends in immunology.

[94]  Steven J. Schrodi,et al.  A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. , 2007, American journal of human genetics.

[95]  Kathleen M. Smith,et al.  IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2–dependent mechanisms with implications for psoriasis pathogenesis , 2006, The Journal of experimental medicine.

[96]  R. Clark,et al.  The Majority of Human Peripheral Blood CD4+CD25highFoxp3+ Regulatory T Cells Bear Functional Skin-Homing Receptors1 , 2006, The Journal of Immunology.

[97]  Christophe Benoist,et al.  A Plaidoyer for ‘Systems Immunology’ , 2006, Immunological reviews.

[98]  R. Clark,et al.  The Vast Majority of CLA+ T Cells Are Resident in Normal Skin1 , 2006, The Journal of Immunology.

[99]  Colin N A Palmer,et al.  Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis , 2006, Nature Genetics.

[100]  Carl Nathan,et al.  Neutrophils and immunity: challenges and opportunities , 2006, Nature Reviews Immunology.

[101]  S. Bale,et al.  Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris , 2006, Nature Genetics.

[102]  M. Shlomchik,et al.  Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. , 2005, Immunity.

[103]  Paul Martin,et al.  Inflammatory cells during wound repair: the good, the bad and the ugly. , 2005, Trends in cell biology.

[104]  A. Gottlieb,et al.  TNF Inhibition Rapidly Down-Regulates Multiple Proinflammatory Pathways in Psoriasis Plaques1 , 2005, The Journal of Immunology.

[105]  J. Schröder,et al.  Antimicrobial peptides in human skin. , 2005, Chemical immunology and allergy.

[106]  P. Perrin,et al.  Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. , 2005, Immunity.

[107]  A. Gurney,et al.  IL-22 Inhibits Epidermal Differentiation and Induces Proinflammatory Gene Expression and Migration of Human Keratinocytes1 , 2005, The Journal of Immunology.

[108]  K. Asadullah,et al.  IL-22 increases the innate immunity of tissues. , 2004, Immunity.

[109]  T. Kupper,et al.  Immune surveillance in the skin: mechanisms and clinical consequences , 2004, Nature Reviews Immunology.

[110]  Frank O. Nestle,et al.  Spontaneous Development of Psoriasis in a New Animal Model Shows an Essential Role for Resident T Cells and Tumor Necrosis Factor-α , 2004, The Journal of experimental medicine.

[111]  M. Dhodapkar,et al.  Increased Expression of Interleukin 23 p19 and p40 in Lesional Skin of Patients with Psoriasis Vulgaris , 2004, The Journal of experimental medicine.

[112]  Tomas Ganz,et al.  Endogenous antimicrobial peptides and skin infections in atopic dermatitis. , 2002, The New England journal of medicine.

[113]  C. Albanesi,et al.  A cytokine‐to‐chemokine axis between T lymphocytes and keratinocytes can favor Th1 cell accumulation in chronic inflammatory skin diseases , 2001, Journal of leukocyte biology.

[114]  T. Luger,et al.  Removal of the majority of epidermal Langerhans cells by topical or systemic steroid application enhances the effector phase of murine contact hypersensitivity. , 1995, Journal of immunology.

[115]  M. Kapsenberg,et al.  The skin immune system Its cellular constituents and their interactions. , 1986, Immunology today.

[116]  R. Steinman,et al.  Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro , 1985, The Journal of experimental medicine.

[117]  J. Streilein Skin-associated lymphoid tissues (SALT): origins and functions. , 1983, The Journal of investigative dermatology.

[118]  J. Albina,et al.  Wound macrophages as key regulators of repair: origin, phenotype, and function. , 2011, The American journal of pathology.

[119]  N. Gulbahce,et al.  Network medicine: a network-based approach to human disease , 2010, Nature Reviews Genetics.

[120]  N. J. Eungdamrong,et al.  Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. , 2009, The Journal of investigative dermatology.

[121]  J. Schröder,et al.  Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection , 2005, Nature Immunology.