Weighted least squares based recursive parametric identification for the submodels of a PWARX system

A piecewise affine autoregressive system with exogenous inputs (PWARX) is composed of a finite number of ARX subsystems, each of which corresponds to a polyhedral partition of the regression space. In this work a weighted least squares (WLS) estimator is suggested to recursively estimate the parameters of the ARX submodels, in which a sequence of kernel functions are introduced. Conditions on the input signal and the PWARX system are imposed to guarantee the almost sure convergence of the WLS estimates. Some numerical examples are included to illustrate performances of the algorithm.

[1]  A. Juloski,et al.  A Bayesian approach to identification of hybrid systems , 2004, CDC.

[2]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[3]  Linda Brus,et al.  Convergence analysis of a recursive identification algorithm for nonlinear ODE models with a restricted black-box parameterization , 2007, 2007 46th IEEE Conference on Decision and Control.

[4]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[5]  Er-Wei Bai,et al.  Non-Parametric Nonlinear System Identification: An Asymptotic Minimum Mean Squared Error Estimator , 2010, IEEE Transactions on Automatic Control.

[6]  Torsten Bohlin,et al.  A case study of grey box identification , 1994, Autom..

[7]  Kiyotsugu Takaba,et al.  Identification of piecewise affine systems based on statistical clustering technique , 2004, Autom..

[8]  Sirish L. Shah,et al.  Gray-box identification of dynamic models for the bleaching operation in a pulp mill , 2005 .

[9]  Er-Wei Bai,et al.  Identification of IIR Nonlinear Systems Without Prior Structural Information , 2007, IEEE Transactions on Automatic Control.

[10]  René Vidal,et al.  Identification of Hybrid Systems: A Tutorial , 2007, Eur. J. Control.

[11]  Grazyna Pajunen,et al.  Adaptive control of wiener type nonlinear systems , 1992, Autom..

[12]  Torbjörn Wigren,et al.  Recursive prediction error identification and scaling of non-linear state space models using a restricted black box parameterization , 2006, Autom..

[13]  Lennart Ljung,et al.  Analysis of recursive stochastic algorithms , 1977 .

[14]  Lennart Ljung,et al.  Theorems for the Asymptotic Analysis of Recursive Stochastic Algorithms , 1975 .

[15]  Alberto Bemporad,et al.  A bounded-error approach to piecewise affine system identification , 2005, IEEE Transactions on Automatic Control.

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[18]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[19]  Wei Xing Zheng,et al.  Recursive Identification for Nonlinear ARX Systems Based on Stochastic Approximation Algorithm , 2010, IEEE Transactions on Automatic Control.

[20]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .