Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle.

[1]  C. Núñez‐Álvarez,et al.  Experimental Eye Research , 2019, Nature.

[2]  J. Gass The syndrome of keratoconjunctivitis, superficial moniliasis, idiopathic hypoparathyroidism and Addison's disease. , 1962, American journal of ophthalmology.

[3]  J. Pauly,et al.  CIRCADIAN PHASE RELATIONSHIPS OF THYMIDINE-3H UPTAKE, LABELED NUCLEI, GRAIN COUNTS, AND CELL DIVISION RATE IN RAT CORNEAL EPITHELIUM , 1967, The Journal of cell biology.

[4]  M. Davanger,et al.  Role of the Pericorneal Papillary Structure in Renewal of Corneal Epithelium , 1971, Nature.

[5]  T. Sun,et al.  Differentiation of the epidermal keratinocyte in cell culture: Formation of the cornified envelope , 1976, Cell.

[6]  J. Friend,et al.  Biochemical transformation of regenerating ocular surface epithelium. , 1977, Investigative ophthalmology & visual science.

[7]  T. Sun,et al.  Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states , 1977, Nature.

[8]  T. Sun,et al.  Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells , 1980, Cell.

[9]  Potten Cs Cell Replacement in Epidermis (Keratopoiesis) via Discrete Units of Proliferation , 1981 .

[10]  J. Bickenbach Identification and behavior of label-retaining cells in oral mucosa and skin. , 1981, Journal of dental research.

[11]  J. Friend,et al.  Corneal re-epithelialization from the conjunctiva. , 1981, Investigative ophthalmology & visual science.

[12]  C. Potten Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. , 1981, International review of cytology.

[13]  T. Sun,et al.  Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. , 1982, Science.

[14]  S. Tseng,et al.  Correlation of specific keratins with different types of epithelial differentiation: Monoclonal antibody studies , 1982, Cell.

[15]  J. Friend,et al.  The X, Y, Z hypothesis of corneal epithelial maintenance. , 1983, Investigative ophthalmology & visual science.

[16]  S. Tseng,et al.  Expression of specific keratin markers by rabbit corneal, conjunctival, and esophageal epithelia during vitamin A deficiency , 1984, The Journal of cell biology.

[17]  T. Sun,et al.  Outcome of Irrigation and Debridement after Failed Two-Stage Reimplantation for Periprosthetic Joint Infection , 2018, BioMed research international.

[18]  A. Roth,et al.  Clinical and pathologic description of 17 cases of corneal intraepithelial neoplasia. , 1984, American journal of ophthalmology.

[19]  Y. Barrandon,et al.  Cell size as a determinant of the clone-forming ability of human keratinocytes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Buck,et al.  Measurement of centripetal migration of normal corneal epithelial cells in the mouse. , 1985, Investigative ophthalmology & visual science.

[21]  T. Sun,et al.  Change in epithelial keratin expression during healing of rabbit corneal wounds. , 1985, Investigative ophthalmology & visual science.

[22]  R. Buck Ultrastructure of conjunctival epithelium replacing corneal epithelium. , 1986, Current eye research.

[23]  A. Schermer,et al.  Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells , 1986, The Journal of cell biology.

[24]  F. Brightbill Corneal Surgery: Theory, Technique and Tissue , 1986 .

[25]  Y. Barrandon,et al.  Three clonal types of keratinocyte with different capacities for multiplication. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Schermer,et al.  Suprabasal expression of a 64-kilodalton keratin (no. 3) in developing human corneal epithelium. , 1987, Differentiation; research in biological diversity.

[27]  J. Friend,et al.  An ultrastructural study of rabbit ocular surface transdifferentiation. , 1988, Investigative ophthalmology & visual science.

[28]  J. Friend,et al.  Comparison of limbal and peripheral human corneal epithelium in tissue culture. , 1988, Investigative ophthalmology & visual science.

[29]  S. Tseng,et al.  Limbal autograft transplantation for ocular surface disorders. , 1989, Ophthalmology.

[30]  R. Thoft The role of the limbus in ocular surface maintenance and repair , 1989, Acta ophthalmologica. Supplement.

[31]  S. Tseng Concept and application of limbal stem cells , 1989, Eye.

[32]  S. Tseng,et al.  Paracellular permeability of corneal and conjunctival epithelia. , 1989, Investigative ophthalmology & visual science.

[33]  A. Sharma,et al.  Kinetics of corneal epithelial maintenance and graft loss. A population balance model. , 1989, Investigative ophthalmology & visual science.

[34]  T. Sun,et al.  Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells , 1989, Cell.

[35]  T. Sun,et al.  Basement membrane heterogeneity and variation in corneal epithelial differentiation. , 1989, Differentiation; research in biological diversity.

[36]  M. Lemp,et al.  Corneal epithelial cell movement in humans , 1989, Eye.

[37]  J V Jester,et al.  Transient synthesis of K6 and K16 keratins in regenerating rabbit corneal epithelium: keratin markers for an alternative pathway of keratinocyte differentiation. , 1989, Differentiation; research in biological diversity.

[38]  S. Tseng,et al.  Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits. , 1990, Ophthalmology.

[39]  S. Tseng,et al.  Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. , 1990, Investigative ophthalmology & visual science.

[40]  M. Loeffler,et al.  Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. , 1990, Development.

[41]  T. Sun,et al.  Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis , 1990, Cell.

[42]  T. Sun,et al.  Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes. , 1991, Investigative ophthalmology & visual science.

[43]  D. Anderson Genetic study of eye cancer in cattle. , 1991, The Journal of heredity.

[44]  S. Tseng,et al.  Corneal epithelial wound healing in the absence of limbal epithelium. , 1991, Investigative ophthalmology & visual science.

[45]  J. Zieske,et al.  Alpha-enolase is restricted to basal cells of stratified squamous epithelium. , 1992, Developmental biology.

[46]  T. Sun,et al.  In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. , 1993, Investigative ophthalmology & visual science.

[47]  S. Galvin,et al.  A 300 bp 5'-upstream sequence of a differentiation-dependent rabbit K3 keratin gene can serve as a keratinocyte-specific promoter. , 1993, Journal of cell science.

[48]  T. Sun,et al.  Keratinocyte stem cells of cornea, skin and hair follicle: common and distinguishing features , 1993 .

[49]  T. Sun,et al.  Functional importance of an Sp1- and an NFkB-related nuclear protein in a keratinocyte-specific promoter of rabbit K3 keratin gene. , 1994, The Journal of biological chemistry.

[50]  S. Galvin,et al.  Lineage-specific and differentiation-dependent expression of K12 keratin in rabbit corneal/limbal epithelial cells: cDNA cloning and northern blot analysis. , 1994, Differentiation; research in biological diversity.

[51]  A Singh,et al.  Corneal epithelial wound healing. , 1994, The British journal of ophthalmology.

[52]  S. Tseng,et al.  Conjunctival epithelial cells do not transdifferentiate in organotypic cultures: expression of K12 keratin is restricted to corneal epithelium. , 1994, Current eye research.

[53]  S. Tseng,et al.  Human Allograft Limbal Transplantation for Corneal Surface Reconstruction , 1994, Cornea.

[54]  S. Tseng,et al.  Cytologic evidence of corneal diseases with limbal stem cell deficiency. , 1995, Ophthalmology.

[55]  S. Tseng,et al.  Cytologlogic Evidence of Corneal Diseases with Limbal Stem Cell Deficiency , 1995 .

[56]  T. Sun,et al.  Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis. , 1995, Investigative ophthalmology & visual science.

[57]  T. Sun,et al.  Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. , 1995, Laboratory investigation; a journal of technical methods and pathology.

[58]  Y. Kuwayama,et al.  Ocular surface abnormalities in aniridia. , 1995, American journal of ophthalmology.

[59]  G. Bartley Surgical reconstruction of the ocular surface in advanced ocular cicatricial pemphigoid and Stevens-Johnson syndrome. , 1996, American journal of ophthalmology.

[60]  E. Holland,et al.  The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. , 1996, Cornea.

[61]  T. Sun,et al.  Rabbit conjunctival and corneal epithelial cells belong to two separate lineages. , 1996, Investigative ophthalmology & visual science.

[62]  K. Tsubota,et al.  Temporary corneal stem cell dysfunction after radiation therapy. , 1996, The British journal of ophthalmology.

[63]  T. Sun,et al.  11 – Keratinocyte stem cells of cornea, skin and hair follicles , 1997 .

[64]  M. Matić,et al.  Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. , 1997, Differentiation; research in biological diversity.

[65]  E. Holland,et al.  Iatrogenic Limbal Stem Cell Deficiency , 1998, Transactions of the American Ophthalmological Society.

[66]  Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. , 1997, Molecular and cellular biology.

[67]  Michele De Luca,et al.  Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium , 1997, The Lancet.

[68]  T. Sun,et al.  Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. , 1998, Journal of cell science.

[69]  T. Sun,et al.  Phorbol ester preferentially stimulates mouse fornical conjunctival and limbal epithelial cells to proliferate in vivo. , 1998, Investigative ophthalmology & visual science.

[70]  G. Pellegrini,et al.  Location and Clonal Analysis of Stem Cells and Their Differentiated Progeny in the Human Ocular Surface , 1999, The Journal of cell biology.

[71]  A. Hanyu,et al.  Functional difference of TGF-beta isoforms regulating corneal wound healing after excimer laser keratectomy. , 1999, Experimental eye research.

[72]  I. Schwab Cultured corneal epithelia for ocular surface disease. , 1999, Transactions of the American Ophthalmological Society.

[73]  C. Chan,et al.  Conjunctival epithelial cells cultured on human amniotic membrane fail to transdifferentiate into corneal epithelial-type cells. , 1999, Cornea.

[74]  I. Schwab,et al.  Single culture media in infectious keratitis. , 1999, Cornea.

[75]  D. Dhouailly,et al.  Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. , 2000, Development.

[76]  Gina A. Taylor,et al.  Involvement of Follicular Stem Cells in Forming Not Only the Follicle but Also the Epidermis , 2000, Cell.

[77]  T. Sun,et al.  Epidermal stem cells: properties, markers, and location. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[78]  E. Holland,et al.  Changing Concepts in the Management of Severe Ocular Surface Disease Over Twenty-five Years , 2000, Cornea.

[79]  R. T. Pires,et al.  Amniotic Membrane Transplantation or Conjunctival Limbal Autograft for Limbal Stem Cell Deficiency Induced by 5-fluorouracil in Glaucoma Surgeries , 2000, Cornea.

[80]  R. J. Mack,et al.  Amniotic membrane transplantation for acute chemical or thermal burns. , 2000, Ophthalmology.

[81]  I. Schwab,et al.  Successful Transplantation of Bioengineered Tissue Replacements in Patients with Ocular Surface Disease , 2000, Cornea.

[82]  T. Sun,et al.  CLED: a calcium-linked protein associated with early epithelial differentiation. , 2000, Experimental cell research.

[83]  K. Tsubota,et al.  Association of preoperative tear function with surgical outcome in severe Stevens-Johnson syndrome. , 2000, Ophthalmology.

[84]  R. Tsai,et al.  Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. , 2000, The New England journal of medicine.

[85]  E. Alfonso Treatment of severe ocular-surface disorders with corneal epithelial stem cell transplantation. , 2000, Archives of ophthalmology.

[86]  N. Koizumi,et al.  Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. , 2001, Ophthalmology.

[87]  S. Daya,et al.  Living related conjunctival limbal allograft for the treatment of stem cell deficiency. , 2001, Ophthalmology.

[88]  G. Pellegrini,et al.  Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. , 2001, Transplantation.

[89]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[90]  D. Ponzin,et al.  p63 identifies keratinocyte stem cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  S. Morrison,et al.  Stem cell potential: Can anything make anything? , 2001, Current Biology.

[92]  N. Koizumi,et al.  Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. , 2001, Archives of ophthalmology.

[93]  H. Blau,et al.  The Evolving Concept of a Stem Cell Entity or Function? , 2001, Cell.

[94]  E. Holland,et al.  Preoperative Staging of Disease Severity , 2002 .

[95]  S. Tseng,et al.  [Surgical approaches for limbal stem cell deficiency]. , 2002, Klinische Monatsblatter fur Augenheilkunde.

[96]  S. Tseng,et al.  Factors affecting outcome following transplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits. , 2002, Investigative ophthalmology & visual science.

[97]  J. Seery Stem cells of the oesophageal epithelium. , 2002, Journal of cell science.

[98]  Focal limbal stem cell deficiency corresponding to an iris coloboma , 2002, The British journal of ophthalmology.

[99]  M. Grüterich,et al.  Strategien zur Behandlung der Limbusstammzellinsuffizienz , 2002 .

[100]  G. Foulks,et al.  Amniotic membrane in the surgical management of acute toxic epidermal necrolysis. , 2002, Ophthalmology.

[101]  S. Daya,et al.  Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. , 2002, Ophthalmology.

[102]  S. Tseng,et al.  Idiopathic limbal stem cell deficiency. , 2002, Ophthalmology.

[103]  W. Feuer,et al.  Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. , 2002, Ophthalmology.

[104]  J. Zieske,et al.  Changes in connexin43 in early ocular surface development , 2002, Current eye research.

[105]  S. Tseng,et al.  Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. , 2002, Ophthalmology.

[106]  Christopher S Potten,et al.  The intestinal epithelial stem cell. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[107]  S. Tseng,et al.  Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. , 2003, Investigative ophthalmology & visual science.

[108]  S. Tseng,et al.  Amniotic membrane transplantation with conjunctival limbal autograft for total limbal stem cell deficiency. , 2003, Ophthalmology.

[109]  S. Tseng,et al.  Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. , 2003, Investigative ophthalmology & visual science.

[110]  S. Tseng,et al.  Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. , 2003, Survey of ophthalmology.

[111]  D. Kooy,et al.  Stem and progenitor cells: the premature desertion of rigorous definitions , 2003, Trends in Neurosciences.

[112]  S. Tseng,et al.  Keratolimbal allograft in corneal reconstruction , 2004, Eye.

[113]  J. Friedenwald Growth pressure and metaplasia of conjunctival and corneal epithelium , 2004, Documenta Ophthalmologica.