Signal to symbol converters: Overview, opportunities and challenges

Signal to symbol converters (SSCs) are an emerging class of integrated microsystems aimed at an informed and intelligent conversion of signals to symbols. We present an architecture overview for signal to symbol converters, discuss related prior work and outline future opportunities and challenges.

[1]  Juhwan Yoo,et al.  A 100MHz–2GHz 12.5x sub-Nyquist rate receiver in 90nm CMOS , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[2]  Yih-Chyun Jenq Digital spectra of non-uniformly sampled signals: theories and applications. IV. Measuring clock/aperture jitter of an A/D system , 1990 .

[3]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  Keir Lauritzen,et al.  Design of a CMOS A2I data converter: Theory, architecture and implementation , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[6]  Andreas G. Andreou,et al.  Energy efficiency in a channel model for the spiking axon , 2003, Neurocomputing.

[7]  Richard G. Baraniuk,et al.  The compressive multiplexer for multi-channel compressive sensing , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Andreas G. Andreou,et al.  Capacity and energy cost of information in biological and silicon photoreceptors , 2001, Proc. IEEE.

[9]  Emmanuel J. Candès,et al.  Design and implementation of a fully integrated compressed-sensing signal acquisition system , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[11]  Richard G. Baraniuk,et al.  On the feasibility of hardware implementation of sub-Nyquist random-sampling based analog-to-information conversion , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[12]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[13]  Yonina C. Eldar,et al.  Blind Multiband Signal Reconstruction: Compressed Sensing for Analog Signals , 2007, IEEE Transactions on Signal Processing.

[14]  Yonina C. Eldar,et al.  Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..

[15]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[16]  W. Black,et al.  Time interleaved converter arrays , 1980, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[17]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[18]  Andreas G. Andreou,et al.  A design framework for low power analog filter banks , 1995 .

[19]  Y.-C. Jenq,et al.  Digital spectra of nonuniformly sampled signals: fundamentals and high-speed waveform digitizers , 1988 .

[20]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[21]  Naresh R. Shanbhag,et al.  A Mathematical Basis For Power-Reduction In Digital VLSI Systems , 1997 .

[22]  A. Andreou,et al.  A CMOS analog-digital integrated circuit for charged particle spectrum measurements , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[23]  Andreas G. Andreou,et al.  An Information Theoretic Framework for Comparing the Bit Energy of Signal Representations at the Circuit Level , 1999 .

[24]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[25]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[26]  B. Wooley,et al.  A 40-GHz-bandwidth, 4-bit, time-interleaved A/D converter using photoconductive sampling , 2003, IEEE J. Solid State Circuits.

[27]  Yonina C. Eldar,et al.  Filterbank reconstruction of bandlimited signals from nonuniform and generalized samples , 2000, IEEE Trans. Signal Process..

[28]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[29]  Richard G. Baraniuk,et al.  Theory and Implementation of an Analog-to-Information Converter using Random Demodulation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[30]  S. Kirolos,et al.  Random Sampling for Analog-to-Information Conversion of Wideband Signals , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.