Diversity and evolution of protein translocation.

Cells need to translocate proteins into and across hydrophobic membranes in order to interact with the extracellular environment. Although a subset of proteins are thought to spontaneously insert into lipid bilayers, translocation of most transported proteins requires additional cellular components. Such components catalyze efficient lateral transport into or across cellular membranes in prokaryotes and eukaryotes. These include, among others, the conserved YidC/Oxa1/Alb3 proteins as well as components of the Sec and the Tat pathways. Our current knowledge of the function and distribution of these components and their corresponding pathways in organisms of the three domains of life is reviewed. On the basis of this information, the evolution of protein translocation is discussed.

[1]  D. Deamer,et al.  The Lipid World , 2001, Origins of life and evolution of the biosphere.

[2]  G. von Heijne,et al.  Biogenesis of inner membrane proteins in Escherichia coli. , 2005, Annual review of microbiology.

[3]  N. Grishin,et al.  Sec61β – a component of the archaeal protein secretory system , 2002 .

[4]  T. Rapoport,et al.  A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation , 1992, Cell.

[5]  Tom A. Rapoport,et al.  Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p , 1995, Cell.

[6]  R. Schekman,et al.  Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast , 1989, The Journal of cell biology.

[7]  J. Eichler Archaeal protein translocation crossing membranes in the third domain of life. , 2000, European journal of biochemistry.

[8]  D. Bedwell,et al.  The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene. , 1983, Nucleic acids research.

[9]  A. Flower,et al.  SecG is an auxiliary component of the protein export apparatus of Escherichia coli , 2000, Molecular and General Genetics MGG.

[10]  Gunnar von Heijne,et al.  Competition between Sec‐ and TAT‐dependent protein translocation in Escherichia coli , 1999, The EMBO journal.

[11]  H. Lill,et al.  Transport of cytochrome c derivatives by the bacterial Tat protein translocation system , 2001, Molecular microbiology.

[12]  T. Rapoport,et al.  A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. , 1996, The EMBO journal.

[13]  M. Hecker,et al.  TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway* , 2000, The Journal of Biological Chemistry.

[14]  R. V. van Nues,et al.  Saccharomyces SRP RNA secondary structures: a conserved S-domain and extended Alu-domain. , 2004, RNA.

[15]  A. Kuhn,et al.  Defining the Regions of Escherichia coli YidC That Contribute to Activity* , 2003, Journal of Biological Chemistry.

[16]  T. Rapoport,et al.  Evolutionary conservation of components of the protein translocation complex , 1994, Nature.

[17]  J. Eichler Evolution of the prokaryotic protein translocation complex: a comparison of archaeal and bacterial versions of SecDF. , 2003, Molecular phylogenetics and evolution.

[18]  R. Stuart Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. , 2002, Biochimica et biophysica acta.

[19]  J. Beckwith,et al.  The secE gene encodes an integral membrane protein required for protein export in Escherichia coli. , 1989, Genes & development.

[20]  Y. Fujita,et al.  SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. , 1993, The EMBO journal.

[21]  B. Hann,et al.  The signal recognition particle in S. cerevisiae , 1991, Cell.

[22]  S. Brink,et al.  Pathway specificity for a ΔpH‐dependent precursor thylakoid lumen protein is governed by a 'sec‐avoidance’ motif in the transfer peptide and a 'sec‐incompatible’ mature protein , 1997, The EMBO journal.

[23]  T. Rapoport,et al.  Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane , 1993, Cell.

[24]  T. Rapoport,et al.  A protein of the endoplasmic reticulum involved early in polypeptide translocation , 1992, Nature.

[25]  B. Berks,et al.  Overlapping functions of components of a bacterial Sec‐independent protein export pathway , 1998, The EMBO journal.

[26]  J. Beckwith,et al.  Mutations in a new gene, secB, cause defective protein localization in Escherichia coli , 1983, Journal of bacteriology.

[27]  K. Nishiyama,et al.  Depletion of SecDF‐YajC causes a decrease in the level of SecG: implication for their functional interaction , 2003, FEBS letters.

[28]  Long-Fei Wu,et al.  Involvement of the twin‐arginine translocation system in protein secretion via the type II pathway , 2001, The EMBO journal.

[29]  G. Fichant,et al.  Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. , 2000, Journal of molecular microbiology and biotechnology.

[30]  J. de Gier,et al.  Targeting and Translocation of Two Lipoproteins in Escherichia coli via the SRP/Sec/YidC Pathway* , 2004, Journal of Biological Chemistry.

[31]  R. Schekman,et al.  BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Palmer,et al.  Coordinating assembly and export of complex bacterial proteins , 2004, The EMBO journal.

[33]  K. Nishiyama,et al.  Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12). , 1994, The Journal of biological chemistry.

[34]  E. Peterson,et al.  Chloroplast Oxa1p Homolog Albino3 Is Required for Post-translational Integration of the Light Harvesting Chlorophyll-binding Protein into Thylakoid Membranes* , 2000, The Journal of Biological Chemistry.

[35]  D. Schünemann Structure and function of the chloroplast signal recognition particle , 2003, Current Genetics.

[36]  T A Rapoport,et al.  Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. , 1996, Annual review of biochemistry.

[37]  R. Ortenberg,et al.  Evidence for Post-translational Membrane Insertion of the Integral Membrane Protein Bacterioopsin Expressed in the Heterologous Halophilic Archaeon Haloferax volcanii * , 2000, The Journal of Biological Chemistry.

[38]  G. Sprenger,et al.  The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. , 1999, European journal of biochemistry.

[39]  N. Green,et al.  Nonlethal sec71-1 and sec72-1 mutations eliminate proteins associated with the Sec63p-BiP complex from S. cerevisiae. , 1994, Molecular biology of the cell.

[40]  A. Driessen,et al.  SecDFyajC forms a heterotetrameric complex with YidC , 2002, Molecular microbiology.

[41]  H. Saibil,et al.  Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. , 2001, European journal of biochemistry.

[42]  W. Gilbert,et al.  Bacteria mature preproinsulin to proinsulin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M H Saier,et al.  Phylogenetic and structural analyses of the oxa1 family of protein translocases. , 2001, FEMS microbiology letters.

[44]  T. Palmer,et al.  Role of the Escherichia coli Tat pathway in outer membrane integrity , 2003, Molecular microbiology.

[45]  K. Yamane,et al.  Bacillus subtilis Histone-like Protein, HBsu, Is an Integral Component of a SRP-like Particle That Can Bind theAlu Domain of Small Cytoplasmic RNA* , 1999, The Journal of Biological Chemistry.

[46]  A. Kuhn,et al.  YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins , 2004, The Journal of cell biology.

[47]  A. Kuhn,et al.  Escherichia coli YidC is a membrane insertase for Sec‐independent proteins , 2004, The EMBO journal.

[48]  Gregory J. Phillips,et al.  Green Fluorescent Protein Functions as a Reporter for Protein Localization in Escherichia coli , 2000, Journal of bacteriology.

[49]  S. Bron,et al.  The chemistry and enzymology of the type I signal peptidases , 1997, Protein science : a publication of the Protein Society.

[50]  G. Giordano,et al.  A novel Sec‐independent periplasmic protein translocation pathway in Escherichia coli , 1998, The EMBO journal.

[51]  V. Irihimovitch,et al.  Post-translational Secretion of Fusion Proteins in the Halophilic Archaea Haloferax volcanii * , 2003, The Journal of Biological Chemistry.

[52]  P. Walter,et al.  The beta subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the alpha subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane , 1995, The Journal of cell biology.

[53]  R. Moll Protein-protein, protein-RNA and protein-lipid interactions of signal-recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens. , 2003, The Biochemical journal.

[54]  T. Samuelsson,et al.  YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly , 2001, FEBS letters.

[55]  Oliver Weichenrieder,et al.  Structure and assembly of the Alu domain of the mammalian signal recognition particle , 2000, Nature.

[56]  J. Tyson,et al.  Coordinated Activation of Hsp70 Chaperones , 2004, Science.

[57]  L. Hendershot,et al.  BiP Maintains the Permeability Barrier of the ER Membrane by Sealing the Lumenal End of the Translocon Pore before and Early in Translocation , 1998, Cell.

[58]  J. Beckwith,et al.  Identification of a new gene (secA) and gene product involved in the secretion of envelope proteins in Escherichia coli , 1982, Journal of bacteriology.

[59]  T. Rapoport,et al.  BiP Acts as a Molecular Ratchet during Posttranslational Transport of Prepro-α Factor across the ER Membrane , 1999, Cell.

[60]  S. Papa,et al.  The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin‐sensitive ATP synthase , 1996, FEBS letters.

[61]  R. Hegde,et al.  Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane , 2003, The Journal of cell biology.

[62]  T. Silhavy,et al.  Mapping an Interface of SecY (PrlA) and SecE (PrlG) by Using Synthetic Phenotypes and In Vivo Cross-Linking , 1999, Journal of bacteriology.

[63]  P. Focia,et al.  Heterodimeric GTPase Core of the SRP Targeting Complex , 2004, Science.

[64]  T. Cavalier-smith Obcells as Proto-Organisms: Membrane Heredity, Lithophosphorylation, and the Origins of the Genetic Code, the First Cells, and Photosynthesis , 2001, Journal of Molecular Evolution.

[65]  M. Saier,et al.  The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. , 2003, Biochimica et biophysica acta.

[66]  R. Stroud,et al.  The signal recognition particle. , 2001, Annual review of biochemistry.

[67]  T. Rapoport,et al.  A signal sequence receptor in the endoplasmic reticulum membrane , 1987, Nature.

[68]  Nicola Mason,et al.  Elongation arrest is a physiologically important function of signal recognition particle , 2000, The EMBO journal.

[69]  B. Jungnickel,et al.  Protein translocation: Common themes from bacteria to man , 1994, FEBS letters.

[70]  M. Rodnina,et al.  Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  T. Rapoport,et al.  Three-dimensional structure of the bacterial protein-translocation complex SecYEG , 2002, Nature.

[72]  Jörg P. Müller,et al.  The Twin-arginine Signal Peptide of PhoD and the TatAd/Cd Proteins of Bacillus subtilis Form an Autonomous Tat Translocation System* , 2002, The Journal of Biological Chemistry.

[73]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[74]  R. Daniel,et al.  Export of active green fluorescent protein to the periplasm by the twin‐arginine translocase (Tat) pathway in Escherichia coli , 2001, Molecular microbiology.

[75]  E. Hartmann,et al.  Prokaryotic Utilization of the Twin-Arginine Translocation Pathway: a Genomic Survey , 2003, Journal of bacteriology.

[76]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[77]  M. Pool Getting to the membrane: how is co-translational protein targeting to the endoplasmic reticulum regulated? , 2003, Biochemical Society transactions.

[78]  B. Berks,et al.  Sec-independent Protein Translocation in Escherichia coli , 1999, The Journal of Biological Chemistry.

[79]  J. Pogliano,et al.  SecD and SecF facilitate protein export in Escherichia coli. , 1994, The EMBO journal.

[80]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[81]  R. Herrmann,et al.  A new type of signal peptide: central role of a twin‐arginine motif in transfer signals for the delta pH‐dependent thylakoidal protein translocase. , 1995, The EMBO journal.

[82]  M. van der Laan,et al.  A conserved function of YidC in the biogenesis of respiratory chain complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[83]  R. Schekman,et al.  Sec61p and BiP directly facilitate polypeptide translocation into the ER , 1992, Cell.

[84]  A. Kuhn,et al.  Direct Interaction of YidC with the Sec-independent Pf3 Coat Protein during Its Membrane Protein Insertion* , 2002, The Journal of Biological Chemistry.

[85]  W. Wickner,et al.  The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling , 1997, The EMBO journal.

[86]  J. Lippincott-Schwartz,et al.  The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells , 2004, The Journal of cell biology.

[87]  R. Stroud,et al.  Substrate twinning activates the signal recognition particle and its receptor , 2004, Nature.

[88]  Z. Ding,et al.  Agrobacterium tumefaciens Twin-Arginine-Dependent Translocation Is Important for Virulence, Flagellation, and Chemotaxis but Not Type IV Secretion , 2003, Journal of bacteriology.

[89]  D. Andrews,et al.  FtsY Binds to the Escherichia coli Inner Membrane via Interactions with Phosphatidylethanolamine and Membrane Proteins* , 2001, The Journal of Biological Chemistry.

[90]  W. Wickner,et al.  Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme , 1997, The EMBO journal.

[91]  Unique structural determinants in the signal peptides of "spontaneously" inserting thylakoid membrane proteins. , 2002, European journal of biochemistry.

[92]  N. Hand,et al.  Translocation of proteins across archaeal cytoplasmic membranes. , 2004, FEMS microbiology reviews.

[93]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[94]  R. Rose,et al.  In Vivo Analysis of an Essential Archaeal Signal Recognition Particle in Its Native Host , 2002, Journal of bacteriology.

[95]  M. van der Laan,et al.  F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis , 2004, The Journal of cell biology.

[96]  George Georgiou,et al.  Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Josef Brunner,et al.  Nascent Lep inserts into the Escherichia coli inner membrane in the vicinity of YidC, SecY and SecA , 2000, FEBS letters.

[98]  J. Eichler,et al.  Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii. , 2004, European journal of biochemistry.

[99]  J. Beckerich,et al.  Sls1p Stimulates Sec63p-Mediated Activation of Kar2p in a Conformation-Dependent Manner in the Yeast Endoplasmic Reticulum , 2000, Molecular and Cellular Biology.

[100]  L. Rivas,et al.  Streptomyces lividans contains a minimal functional signal recognition particle that is involved in protein secretion. , 2003, Microbiology.

[101]  Martin Wiedmann,et al.  YidC mediates membrane protein insertion in bacteria , 2000, Nature.

[102]  W. Martin,et al.  On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[103]  R. Rose,et al.  The Haloferax volcanii FtsY Homolog Is Critical for Haloarchaeal Growth but Does Not Require the A Domain , 2005, Journal of bacteriology.

[104]  G. Sprenger,et al.  Isolation and Characterization of Bifunctional Escherichia coli TatA Mutant Proteins That Allow Efficient Tat-dependent Protein Translocation in the Absence of TatB* , 2005, Journal of Biological Chemistry.

[105]  R. Turner,et al.  The Twin-arginine Leader-binding Protein, DmsD, Interacts with the TatB and TatC Subunits of the Escherichia coli Twin-arginine Translocase* , 2003, Journal of Biological Chemistry.

[106]  Koreaki Ito,et al.  SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. , 1989, The EMBO journal.

[107]  T. Silhavy,et al.  The E. coli ffh gene is necessary for viability and efficient protein export , 1992, Nature.

[108]  M. A. Rosenblad,et al.  Identification of chloroplast signal recognition particle RNA genes. , 2004, Plant & cell physiology.

[109]  H. Koch,et al.  In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. , 1999, Molecular biology of the cell.

[110]  M. Halić,et al.  SRP meets the ribosome , 2004, Nature Structural &Molecular Biology.

[111]  A. Seluanov,et al.  FtsY, the Prokaryotic Signal Recognition Particle Receptor Homologue, Is Essential for Biogenesis of Membrane Proteins* , 1997, The Journal of Biological Chemistry.

[112]  M. Vasil,et al.  Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[113]  P. Gröbner,et al.  Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea. , 1999, Genetics.

[114]  Jessica C Kissinger,et al.  Adaptation of protein secretion to extremely high‐salt conditions by extensive use of the twin‐arginine translocation pathway , 2002, Molecular microbiology.

[115]  Matthias Müller,et al.  Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. , 2003, Molecular cell.

[116]  T. Rapoport,et al.  Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA , 2000, The EMBO journal.

[117]  G. Blobel,et al.  Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein , 1981, The Journal of cell biology.

[118]  B. Jungnickel,et al.  Binding of signal recognition particle gives ribosome/nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction. , 1998, Molecular biology of the cell.

[119]  G. Vonheijne The signal peptide. , 1990 .

[120]  J. Samama,et al.  Involvement of a Mate Chaperone (TorD) in the Maturation Pathway of Molybdoenzyme TorA* , 2003, Journal of Biological Chemistry.

[121]  M. Wittekind,et al.  A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins , 1983, Cell.

[122]  Joachim Frank,et al.  Structure of the signal recognition particle interacting with the elongation-arrested ribosome , 2004, Nature.

[123]  J. Beckwith,et al.  E. coli mutant pleiotropically defective in the export of secreted proteins , 1981, Cell.

[124]  R. Wetzker,et al.  Sequence-specific Binding of prePhoD to Soluble TatAd Indicates Protein-mediated Targeting of the Tat Export in Bacillus subtilis* , 2003, Journal of Biological Chemistry.

[125]  P. Silver,et al.  A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein , 1989, The Journal of cell biology.