An inventory of tree species in Europe—An essential data input for air pollution modelling

Abstract We present a detailed tree species inventory covering Europe, parts of Africa and parts of Asia. The inventory contains 39 groups of species that are important for biogenic VOCs or pollen emission calculations. For example: oak ( Quercus ), poplar ( Populus ), pines ( Pinus ), spruce ( Picea ), birch ( Betula ) and alder ( Alnus ). The inventory is based on national forest inventories and national statistics and gives tree species distribution in percentage within broadleaved as well as conifer forests. The inventory includes data from 799 regions and is redistributed into the 50 km × 50 km EMEP grid. The inventory is therefore prepared for easy implementation into atmospheric transport models by providing an extension to already applied land use data such as the Corine Land Cover (CLC2000) or Global Land Cover (GLC2000). The gridded version of the data set will be available on the webpage http://www.dmu.dk/International/Air/Models/Background/Trees/ .

[1]  M. Mietus,et al.  Seasonal variations in the atmospheric Betula pollen count in Gdańsk (southern Baltic coast) in relation to meteorological parameters , 2002 .

[2]  M. Hjelmroos Evidence of long-distance transport of betula pollen , 1991 .

[3]  Sönke Szidat,et al.  Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C , 2006 .

[4]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[5]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[6]  J. Christensen,et al.  Copenhagen – a significant source of birch (Betula) pollen? , 2008, International journal of biometeorology.

[7]  Alexandre Caseiro,et al.  Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin , 2007 .

[8]  Keri C. Hornbuckle,et al.  Magnitude and origin of polychlorinated biphenyl (PCB) and dichlorodiphenyltrichloroethane (DDT) compounds resuspended in southern Lake Michigan , 2004 .

[9]  M. Hjelmroos Long-distance transport ofBetula pollen grains and allergic symptoms , 1992 .

[10]  W. H. Wagner,et al.  Pollen Release in the Common Ragweed (Ambrosia artemisiifolia) , 1959, Botanical Gazette.

[11]  M. Sofiev,et al.  Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study , 2006, International journal of biometeorology.

[12]  Stefan Reis,et al.  Assessment of the atmospheric nitrogen and sulphur inputs into the North Sea using a Lagrangian model , 2002 .

[13]  A. Bouwman,et al.  Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990 , 1998 .

[14]  A. Winer,et al.  Measured isoprene emission rates of plants in California landscapes: comparison to estimates from taxonomic relationships , 2001 .

[15]  Tuomas Häme,et al.  Compilation of a European forest map from Portugal to the Ural mountains based on earth observation data and forest statistics , 2003 .

[16]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[17]  C. Skjøth,et al.  Long-range transport of Ambrosia pollen to Poland , 2008 .

[18]  M. Sofiev,et al.  Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations , 2006 .

[19]  C. N. Hewitt,et al.  Inventorying emissions from nature in Europe , 1999 .

[20]  A. S. Belward,et al.  A new SPOT4-VEGETATION derived land cover map of Northern Eurasia , 2003 .

[21]  K. Laaidi,et al.  Ragweed in France: an invasive plant and its allergenic pollen. , 2003, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[22]  A. H. McKay,et al.  A survey of California plant species with a portable VOC analyzer for biogenic emission inventory development , 2002 .

[23]  C. N. Hewitt,et al.  Biogenic emissions in Europe: 1. Estimates and uncertainties , 1995 .

[24]  B. Vogel,et al.  Numerical modelling of pollen dispersion on the regional scale , 2004 .

[25]  G. D'Amato,et al.  European allergenic pollen types , 1992 .

[26]  Robert W. Pasken,et al.  Using dispersion and mesoscale meteorological models to forecast pollen concentrations , 2005 .

[27]  J. Corden,et al.  UK regional variations in Betula pollen (1993–1997) , 2000 .

[28]  Carsten Ambelas Skjøth,et al.  Implementing a dynamical ammonia emission parameterization in the large‐scale air pollution model ACDEP , 2004 .

[29]  Pierre Defourny,et al.  The Global land cover for the year 2000 , 2003 .

[30]  Jesper Heile Christensen,et al.  Development of a High-Resolution Nested Air Pollution Model: The Numerical Approach , 2002 .

[31]  C. Skjøth,et al.  The long‐range transport of birch (Betula) pollen from Poland and Germany causes significant pre‐season concentrations in Denmark , 2007, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[32]  Helmut Rempe Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftströmungen , 1937, Planta.

[33]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[34]  R. Atkinson Atmospheric chemistry of VOCs and NOx , 2000 .

[35]  F. Went Blue Hazes in the Atmosphere , 1960, Nature.

[36]  G. Seufert,et al.  Novel maps for forest tree species in Europe , 2001 .

[37]  Mark A. Sutton,et al.  Modelling the spatial distribution of agricultural ammonia emissions in the UK , 1998 .

[38]  Laurens Ganzeveld,et al.  Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget , 2006 .

[39]  G. S. Raynor,et al.  DIURNAL PATTERNS OF POLLEN EMISSION IN AMBROSIA, PHLEUM, ZEA, AND RICINUS' , 1969 .