Scaling the Ion Trap Quantum Processor

Trapped atomic ions are standards for quantum information processing, serving as quantum memories, hosts of quantum gates in quantum computers and simulators, and nodes of quantum communication networks. Quantum bits based on trapped ions enjoy a rare combination of attributes: They have exquisite coherence properties, they can be prepared and measured with nearly 100% efficiency, and they are readily entangled with each other through the Coulomb interaction or remote photonic interconnects. The outstanding challenge is the scaling of trapped ions to hundreds or thousands of qubits and beyond, at which scale quantum processors can outperform their classical counterparts in certain applications. We review the latest progress and prospects in that effort, with the promise of advanced architectures and new technologies, such as microfabricated ion traps and integrated photonics.

[1]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[2]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[3]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[4]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[5]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[6]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[7]  Peter Maunz,et al.  Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing , 2011 .

[8]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.

[9]  Curtis Volin,et al.  Demonstration of integrated microscale optics in surface-electrode ion traps , 2011, 1105.4905.

[10]  D. Stick,et al.  Design, fabrication and experimental demonstration of junction surface ion traps , 2011 .

[11]  E. W. Streed,et al.  Wavelength-scale imaging of trapped ions using a phase Fresnel lens. , 2011, Optics letters.

[12]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[13]  I. Chuang,et al.  Microfabricated surface ion trap on a high-finesse optical mirror. , 2010, Optics letters.

[14]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[15]  Jungsang Kim,et al.  Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system , 2010, 1006.2757.

[16]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[17]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[18]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[19]  M. Rothstein Keeping your genes private. , 2008, Scientific American.

[20]  C. Monroe,et al.  Quantum computing with ions. , 2008, Scientific American.

[21]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[22]  Jaroslaw Labaziewicz,et al.  Temperature dependence of electric field noise above gold surfaces. , 2008, Physical review letters.

[23]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[26]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[27]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[28]  Thomas G. Walker,et al.  Fast ground state manipulation of neutral atoms in microscopic optical traps. , 2005, Physical review letters.

[29]  C. Monroe,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2005, quant-ph/0508037.

[30]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[31]  C Langer,et al.  Spectroscopy Using Quantum Logic , 2005, Science.

[32]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[33]  D. Leibfried,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[34]  C. Nuzman,et al.  1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss , 2003, IEEE Photonics Technology Letters.

[35]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[36]  D. Leibfried,et al.  Sympathetic cooling of 9 Be + and 24 Mg + for quantum logic , 2003, quant-ph/0307088.

[37]  David J. Wineland,et al.  Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic , 2003 .

[38]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[39]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[40]  C. Simon,et al.  Robust long-distance entanglement and a loophole-free bell test with ions and photons. , 2003, Physical review letters.

[41]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[42]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[43]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[44]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[45]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[46]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[47]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[48]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.