THE EXPECTED SIZE OF SOME GRAPHS IN COMPUTATIONAL GEOMETRY

[1]  Rolf Klein,et al.  Direct dominance of points , 1986 .

[2]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[3]  Ralf Hartmut Güting,et al.  The direct dominance problem , 1985, SCG '85.

[4]  D. Avis,et al.  REMARKS ON THE SPHERE OF INFLUENCE GRAPH , 1985 .

[5]  Kenneth J. Supowit,et al.  The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees , 1983, JACM.

[6]  D. T. Lee,et al.  An Improved Algorithm for the Rectangle Enclosure Problem , 1982, J. Algorithms.

[7]  Mark H. Overmars,et al.  On the Equivalence of Some Rectangle Problems , 1982, Inf. Process. Lett..

[8]  Godfried T. Toussaint,et al.  Computational Geometric Problems in Pattern Recognition , 1982 .

[9]  D. Matula,et al.  Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .

[10]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[11]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[12]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[13]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .

[14]  T. Broadbent Measure and Integral , 1957, Nature.

[15]  P. J. Clark,et al.  Grouping in Spatial Distributions. , 1956, Science.

[16]  P. J. Clark,et al.  On some aspects of spatial pattern in biological populations. , 1955, Science.

[17]  P. J. Clark,et al.  Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations , 1954 .

[18]  K.,et al.  of Theorem , 2022 .