Fluctuation-guided search in quantum annealing

Quantum annealing has great promise in leveraging quantum mechanics to solve combinatorial optimisation problems. However, to realize this promise to it's fullest extent we must appropriately leverage the underlying physics. In this spirit, I examine how the well known tendency of quantum annealers to seek solutions where higher levels of quantum fluctuations are present can be used to trade off optimality of the solution to a synthetic problem for the ability to have a more flexible solution, where some variables can be changed at little or no cost. I demonstrate this tradeoff experimentally using the reverse annealing feature a D-Wave Systems QPU for both problems composed of all binary variables, and those containing some higher-than-binary discrete variables. I further demonstrate how local controls on the qubits can be used to control the levels of fluctuations and guide the search. I discuss places where leveraging this tradeoff could be practically important, namely in hybrid algorithms where some penalties cannot be directly implemented on the annealer and provide some proof-of-concept evidence of how these algorithms could work.

[1]  Firas Hamze,et al.  From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems. , 2017, Physical review. E.

[2]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[3]  Nicholas Chancellor,et al.  Domain wall encoding of discrete variables for quantum annealing and QAOA , 2019, Quantum Science and Technology.

[4]  E. Vincent,et al.  Spin Glasses: Experimental Signatures and Salient Outcomes , 2017, 1709.10293.

[5]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[6]  Pingxing Chen,et al.  An Alternative Approach to Construct the Initial Hamiltonian of the Adiabatic Quantum Computation , 2013 .

[7]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[8]  H. Katzgraber,et al.  Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians. , 2016, Physical review letters.

[9]  Masoud Mohseni,et al.  Quantum-Assisted Genetic Algorithm , 2019, ArXiv.

[10]  T. Vojta Quantum Griffiths Effects and Smeared Phase Transitions in Metals: Theory and Experiment , 2010, 1005.2707.

[11]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[12]  Fred L. Drake,et al.  The Python Language Reference Manual , 1999 .

[13]  Tobias Stollenwerk,et al.  Flight Gate Assignment with a Quantum Annealer , 2018, QTOP@NetSys.

[14]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[15]  R. Orús,et al.  Forecasting financial crashes with quantum computing , 2018, Physical Review A.

[16]  Nicholas Chancellor,et al.  Modernizing quantum annealing II: genetic algorithms with the inference primitive formalism , 2016, Natural Computing.

[17]  A. Young,et al.  Solving the Graph Isomorphism Problem with a Quantum Annealer , 2012, 1207.1712.

[18]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[19]  Andrew D. King,et al.  Experimental demonstration of perturbative anticrossing mitigation using nonuniform driver Hamiltonians , 2017, 1708.03049.

[20]  Aidan Roy,et al.  Hearing the Shape of the Ising Model with a Programmable Superconducting-Flux Annealer , 2014, Scientific reports.

[21]  Andrew J. Ochoa,et al.  Uncertain fate of fair sampling in quantum annealing , 2018, Physical Review A.

[22]  B. Zhang,et al.  Advantages of Unfair Quantum Ground-State Sampling , 2017, Scientific Reports.

[23]  V. Kendon,et al.  Energetic Perspective on Rapid Quenches in Quantum Annealing , 2020, PRX Quantum.

[24]  D. A. Lidar,et al.  Prospects for Quantum Enhancement with Diabatic Quantum Annealing , 2020 .

[25]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[26]  K. Markström,et al.  Discriminating nonisomorphic graphs with an experimental quantum annealer , 2020, 2005.01241.

[27]  Nicholas Chancellor,et al.  Domain wall encoding of integer variables for quantum annealing and QAOA , 2019 .

[28]  F. Nori,et al.  Decoherence in a scalable adiabatic quantum computer , 2006, quant-ph/0608212.

[29]  Probing Mid-Band and Broad-Band Noise in Lower-Noise D-Wave 2000 Q Fabrication Stacks , 2019 .

[30]  Helmut G. Katzgraber,et al.  Quantum annealing for problems with ground-state degeneracy , 2008 .

[31]  K. Jarrod Millman,et al.  Array programming with NumPy , 2020, Nat..

[32]  M. Hastings Duality in Quantum Quenches and Classical Approximation Algorithms: Pretty Good or Very Bad , 2019, Quantum.

[33]  Erio Tosatti,et al.  Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model , 2002 .

[34]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[35]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[36]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[37]  T. Graß Quantum Annealing with Longitudinal Bias Fields. , 2019, Physical review letters.

[38]  S. C. Benjamin,et al.  A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph , 2016, Scientific Reports.

[39]  M. Marzec Portfolio Optimization: Applications in Quantum Computing , 2014 .

[41]  Rupak Biswas,et al.  Quantum Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Management , 2017, IEEE Transactions on Intelligent Transportation Systems.

[42]  Damian S. Steiger,et al.  Heavy Tails in the Distribution of Time to Solution for Classical and Quantum Annealing. , 2015, Physical review letters.

[43]  V. Kendon,et al.  Search range in experimental quantum annealing , 2020, 2008.11054.

[44]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[45]  Stefan Zohren,et al.  Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture , 2016, 1603.09521.

[46]  Alán Aspuru-Guzik,et al.  A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..

[47]  Nicholas Chancellor,et al.  Modernizing quantum annealing using local searches , 2016, 1606.06833.

[48]  Davide Venturelli,et al.  Reverse quantum annealing approach to portfolio optimization problems , 2018, Quantum Machine Intelligence.

[49]  Nicholas Chancellor,et al.  Finding spin glass ground states using quantum walks , 2019, New Journal of Physics.

[50]  Daniel O'Malley An approach to quantum-computational hydrologic inverse analysis , 2018, Scientific Reports.

[51]  Firas Hamze,et al.  Chook - A comprehensive suite for generating binary optimization problems with planted solutions , 2020, ArXiv.

[52]  Improved coherence leads to gains in quantum annealing performance , 2019 .

[53]  Andrew D. King,et al.  Performance of a quantum annealer on range-limited constraint satisfaction problems , 2015, ArXiv.

[54]  A. Amendola,et al.  Low Rank Non-Negative Matrix Factorization with D-Wave 2000Q , 2018, 1808.08721.

[55]  Andrew D. King,et al.  Degeneracy, degree, and heavy tails in quantum annealing , 2015, 1512.07325.

[56]  Daniel O'Malley,et al.  Reverse annealing for nonnegative/binary matrix factorization , 2021, PloS one.

[57]  M. Amin,et al.  Algorithmic approach to adiabatic quantum optimization , 2011, 1108.3303.