Estimation of a Discriminant Function Based on Small Sample Size from a Mixture of Two Gumbel Distributions

The identifiability of finite mixture of Gumbel distributions is proved. A procedure is presented for finding maximum likelihood estimates for the four parameters of a mixture of two Gumbel distributions, using classified and unclassified observations. A nonlinear discriminant function for a mixture of two Gumbel distributions is derived and estimated based on small sample size. Throughout simulation experiments, the performance of the corresponding estimated nonlinear discriminant function is investigated.

[1]  Geoffrey J. McLachlan,et al.  A Comparison of the Mixture and Classification Approaches to Cluster-Analysis , 1980 .

[2]  P. Deb Finite Mixture Models , 2008 .

[3]  Terence J. O'Neill Normal Discrimination with Unclassified Observations , 1978 .

[4]  H. Teicher On the Mixture of Distributions , 1960 .

[5]  G. M. Tallis,et al.  Identifiability of mixtures , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[6]  S. Yakowitz,et al.  On the Identifiability of Finite Mixtures , 1968 .

[7]  N. E. Day Estimating the components of a mixture of normal distributions , 1969 .

[8]  Cláudia Neves,et al.  Extreme Value Distributions , 2011, International Encyclopedia of Statistical Science.

[9]  S. Nadarajah,et al.  The beta Gumbel distribution , 2004 .

[10]  Sidney J. Yakowitz,et al.  Unsupervised learning and the identification of finite mixtures , 1970, IEEE Trans. Inf. Theory.

[11]  G. McLachlan,et al.  Small sample results for a linear discriminant function estimated from a mixture of normal populations , 1979 .

[12]  Essam Khalaf Al-Hussaini,et al.  On the identifiability of finite mixtures of distributions , 1981, IEEE Trans. Inf. Theory.

[13]  Herbert Robbins,et al.  Mixture of Distributions , 1948 .

[14]  John T. Kent,et al.  Identifiability of Finite Mixtures for Directional Data , 1983 .

[15]  G. McLachlan,et al.  The efficiency of a linear discriminant function based on unclassified initial samples , 1978 .

[16]  R. Amoh Estimation of a discriminant function from a mixture of two inverse gaussian distributions when sample size is small , 1985 .

[17]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[18]  Abd EL-Baset A. Ahmad,et al.  Bayesian Estimation, Prediction and Characterization for the Gumbel Model Based on Records , 2002 .

[19]  H. Teicher Identifiability of Mixtures of Product Measures , 1967 .

[20]  Martin D. Fraser,et al.  Identifiability of Finite Mixtures of Von Mises Distributions , 1981 .

[21]  K. E. Ahmad Small sample results for a nonlinear discriminant function estimated from a mixture of two burr type XII distributions , 1994 .

[22]  Mohamed A. W. Mahmoud,et al.  Estimation of a discriminant function from a mixture of two gamma distributions when the sample size is small , 1993 .

[23]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[24]  K. E. Ahmad,et al.  The identifiability of finite mixing of some noncentral distributions , 1990 .

[25]  David W. Hosmer,et al.  On mle of the parameters of a mixture of two normal distributions when the sample size is small , 1973 .

[26]  K. E. Ahmad Identifiability of finite mixtures using a new transform , 1988 .