Comparative Strengths of SCaMPR Satellite QPEs with and without TRMM Ingest versus Gridded Gauge-Only Analyses

AbstractThis paper assesses the accuracy of satellite quantitative precipitation estimates (QPEs) from two versions of the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm relative to that of gridded gauge-only QPEs. The second version of SCaMPR uses the QPEs from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and Microwave Imager as predictands whereas the first version does not. The assessments were conducted for 22 catchments in Texas and Louisiana against National Weather Service operational multisensor QPE. Particular attention was given to the density below which SCaMPR QPEs outperform gauge-only QPEs and effects of TRMM ingest. Analyses indicate that SCaMPR QPEs can be competitive in terms of correlation and CSI against sparse gauge networks (with less than one gauge per 3200–12 000 km2) and over 1–3-h scale, but their relative strengths diminish with temporal aggregation. In addition, the major advantage of SCaMPR QPEs is its relatively low false alarm rates...

[1]  Yudong Tian,et al.  Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications , 2007 .

[2]  Robert F. Adler,et al.  On the Tropical Rainfall Measuring Mission (TRMM) , 1996 .

[3]  M. Gebremichael,et al.  Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands , 2011 .

[4]  J. Bonta,et al.  Subpixel-Scale Rainfall Variability and the Effects on Separation of Radar and Gauge Rainfall Errors , 2007 .

[5]  P. Xie,et al.  An Intercomparison of Gauge Observations and Satellite Estimates of Monthly Precipitation , 1995 .

[6]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using radar rainfall and rain gage data , 1998 .

[7]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[8]  D. Maidment,et al.  Coordinate Transformations for Using NEXRAD Data in GIS-Based Hydrologic Modeling , 1999 .

[9]  D. Kitzmiller,et al.  Effects of Retrospective Gauge-Based Readjustment of Multisensor Precipitation Estimates on Hydrologic Simulations , 2011 .

[10]  Phillip A. Arkin,et al.  An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data , 2009 .

[11]  D. Seo,et al.  Radar and Multisensor Rainfall Estimation for Hydrologic Applications , 2013 .

[12]  Jay P. Breidenbach,et al.  Real-Time Correction of Spatially Nonuniform Bias in Radar Rainfall Data Using Rain Gauge Measurements , 2002 .

[13]  A. Gruber,et al.  GOES Multispectral Rainfall Algorithm (GMSRA) , 2001 .

[14]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[15]  F. Turk,et al.  Validating a rapid-update satellite precipitation analysis across telescoping space and time scales , 2009 .

[16]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[17]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[18]  Byung-Ju Sohn,et al.  Validation of Satellite-Based High-Resolution Rainfall Products over the Korean Peninsula Using Data from a Dense Rain Gauge Network , 2010 .

[19]  M. Hulme,et al.  Dependence of Large-Scale Precipitation Climatologies on Temporal and Spatial Sampling , 1997 .

[20]  P. Xie,et al.  A Gauge-Based Analysis of Daily Precipitation over East Asia , 2007 .

[21]  S. Sorooshian,et al.  Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting , 2005 .

[22]  Eric F. Wood,et al.  Assessing the skill of satellite‐based precipitation estimates in hydrologic applications , 2010 .

[23]  Dong-Jun Seo,et al.  Characteristics of Reprocessed Hydrometeorological Automated Data System (HADS) Hourly Precipitation Data , 2009 .

[24]  Witold F. Krajewski,et al.  Radar hydrology: rainfall estimation. , 2002 .

[25]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[26]  Dong-Jun Seo,et al.  The WSR-88D rainfall algorithm , 1998 .

[27]  Eyal Amitai,et al.  Comparison of TRMM Radar Rainfall Estimates with NOAA Next-Generation QPE , 2009 .

[28]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using rain gage data under fractional coverage conditions , 1998 .

[29]  Kenneth J. Tobin,et al.  Adjusting Satellite Precipitation Data to Facilitate Hydrologic Modeling , 2010 .

[30]  Robert J. Kuligowski,et al.  A Self-Calibrating Real-Time GOES Rainfall Algorithm for Short-Term Rainfall Estimates , 2002 .

[31]  Dong-Jun Seo,et al.  Real-time estimation of mean field bias in radar rainfall data , 1999 .

[32]  Tomoo Ushio,et al.  Evaluation of GSMaP Precipitation Estimates over the Contiguous United States , 2010 .

[33]  R. Scofield,et al.  The Operational GOES Infrared Rainfall Estimation Technique , 1998 .

[34]  J. Gourley,et al.  Evolving Multisensor Precipitation Estimation Methods: Their Impacts on Flow Prediction Using a Distributed Hydrologic Model , 2011 .

[35]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[36]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[37]  R. Scofield,et al.  Status and Outlook of Operational Satellite Precipitation Algorithms for Extreme-Precipitation Events , 2003 .

[38]  David A. Imy,et al.  A Description of the Initial Set of Analysis Products Available from the NEXRAD WSR-88D System , 1993 .

[39]  Witold F. Krajewski,et al.  Estimation of the mean field bias of radar rainfall estimates , 1991 .

[40]  C. Ropelewski,et al.  Validation of satellite rainfall products over East Africa's complex topography , 2007 .

[41]  Eyal Amitai,et al.  Multiplatform Comparisons of Rain Intensity for Extreme Precipitation Events , 2012, IEEE Transactions on Geoscience and Remote Sensing.