Extreme eigenvalue distributions of Jacobi ensembles: New exact representations, asymptotics and finite size corrections

Let $\mathbf{W}_1$ and $\mathbf{W}_2$ be independent $n\times n$ complex central Wishart matrices with $m_1$ and $m_2$ degrees of freedom respectively. This paper is concerned with the extreme eigenvalue distributions of double-Wishart matrices $(\mathbf{W}_1+\mathbf{W}_2)^{-1}\mathbf{W}_1$, which are analogous to those of F matrices ${\bf W}_1 {\bf W}_2^{-1}$ and those of the Jacobi unitary ensemble (JUE). Defining $\alpha_1=m_1-n$ and $\alpha_2=m_2-n$, we derive new exact distribution formulas in terms of $(\alpha_1+\alpha_2)$-dimensional matrix determinants, with elements involving derivatives of Legendre polynomials. This provides a convenient exact representation, while facilitating a direct large-$n$ analysis with $\alpha_1$ and $\alpha_2$ fixed (i.e., under the so-called "hard-edge" scaling limit); the analysis is based on new asymptotic properties of Legendre polynomials and their relation with Bessel functions that are here established. Specifically, we present limiting formulas for the smallest and largest eigenvalue distributions as $n \to \infty$ in terms of $\alpha_1$- and $\alpha_2$-dimensional determinants respectively, which agrees with expectations from known universality results involving the JUE and the Laguerre unitary ensemble (LUE). We also derive finite-$n$ corrections for the asymptotic extreme eigenvalue distributions under hard-edge scaling, giving new insights on universality by comparing with corresponding correction terms derived recently for the LUE. Our derivations are based on elementary algebraic manipulations, differing from existing results on double-Wishart and related models which often involve Fredholm determinants, Painleve differential equations, or hypergeometric functions of matrix arguments.

[1]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[2]  Matthew R. McKay,et al.  Coulumb Fluid, Painlevé Transcendents, and the Information Theory of MIMO Systems , 2012, IEEE Transactions on Information Theory.

[3]  P. Forrester,et al.  Finite‐size corrections at the hard edge for the Laguerre β ensemble , 2019, Studies in Applied Mathematics.

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[6]  Henry P. McKean,et al.  Fredholm determinants , 2011 .

[7]  P. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PVI , the JUE, CyUE, cJUE and scaled limits , 2002, Nagoya Mathematical Journal.

[8]  G. Schehr,et al.  Finite N corrections to the limiting distribution of the smallest eigenvalue of Wishart complex matrices , 2015, 1506.02387.

[9]  I. Johnstone MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.

[10]  Donald St. P. Richards,et al.  Totally positive kernels, pólya frequency functions, and generalized hypergeometric series , 1990 .

[11]  Ioana Dumitriu,et al.  Distributions of the Extreme Eigenvaluesof Beta-Jacobi Random Matrices , 2008, SIAM J. Matrix Anal. Appl..

[12]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[13]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[14]  Prathapasinghe Dharmawansa,et al.  Some new results on the eigenvalues of complex non-central Wishart matrices with a rank-1 mean , 2016, J. Multivar. Anal..

[15]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[16]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[17]  P. J. Forrester Quantum conductance problems and the Jacobi ensemble , 2006 .

[18]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[19]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[20]  Increasing subsequences and the hard-to-soft edge transition in matrix ensembles , 2002, math-ph/0205007.

[21]  Jyoichi Kaneko,et al.  Selberg integrals and hypergeometric functions associated with Jack polynomials , 1993 .

[22]  Chintha Tellambura,et al.  Eigenvalue-Based Detection of a Signal in Colored Noise: Finite and Asymptotic Analyses , 2019, IEEE Transactions on Information Theory.

[23]  L. Haine,et al.  The Jacobi polynomial ensemble and the Painlevé VI equation , 1999 .

[24]  M. Wadati,et al.  Eigenvalue Distribution of Random Matrices at the Spectrum Edge , 1993 .

[25]  Hyundong Shin,et al.  MIMO Networks: The Effects of Interference , 2008, IEEE Transactions on Information Theory.

[26]  Mohamed-Slim Alouini,et al.  Quadratic forms in complex Gaussian matrices and performance analysis of MIMO systems with cochannel interference , 2004, IEEE Transactions on Wireless Communications.

[27]  P. Forrester,et al.  Finite size corrections at the hard edge for the Laguerre $\beta$ ensemble , 2019, 1903.08823.

[28]  A note on the expansion of the smallest eigenvalue distribution of the LUE at the hard edge , 2015, 1504.00235.

[29]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .

[30]  P. Forrester Log-Gases and Random Matrices , 2010 .

[31]  A. Edelman,et al.  Beyond Universality in Random Matrix Theory , 2014, 1405.7590.

[32]  C. Khatri Distribution of the Largest or the Smallest Characteristic Root Under Null Hypothesis Concerning Complex Multivariate Normal Populations , 1964 .

[33]  S. N. Roy On a Heuristic Method of Test Construction and its use in Multivariate Analysis , 1953 .

[34]  Optimal soft edge scaling variables for the Gaussian and Laguerre even β ensembles , 2018, Nuclear Physics B.

[35]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[36]  Peter J. Forrester,et al.  Complex Wishart matrices and conductance in mesoscopic systems: Exact results , 1994 .

[37]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.