Hohlraum energetics scaling to 520 TW on the National Ignition Facilitya)

Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.

[1]  J D Lindl,et al.  Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. , 2009, Physical review letters.

[2]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[3]  E. L. Lindman,et al.  Theory of stimulated scattering processes in laser‐irradiated plasmas , 1975 .

[4]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[5]  John L. Kline,et al.  Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions , 2009 .

[6]  E. T. Alger,et al.  Cryogenic thermonuclear fuel implosions on the National Ignition Facility , 2012 .

[7]  J. D. Moody,et al.  Design of the National Ignition Facility static x-ray imager , 2001 .

[8]  M. Rosen,et al.  Proof of Principle experiments that demonstrate utility of cocktail hohlraums for indirect drive ignition , 2007 .

[9]  P. Michel,et al.  Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility a) , 2010 .

[10]  Abbas Nikroo,et al.  Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility , 2007 .

[11]  D. S. Montgomery,et al.  Recent Trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade , 2002 .

[12]  B. Albright,et al.  Different kλD regimes for nonlinear effects on Langmuir wavesa) , 2006 .

[13]  L. Suter,et al.  Drive characterization of indirect drive targets on the Nova laser (invited) , 1995 .

[14]  Robert L. Kauffman,et al.  Measurement of 0.1-3-keV x rays from laser plasmas , 1986 .

[15]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[16]  M. J. Pivovaroff,et al.  Images of the laser entrance hole from the static x-ray imager at NIF. , 2010, The Review of scientific instruments.

[17]  Langmuir decay instability cascade in laser-plasma experiments. , 2002, Physical review letters.

[18]  L. Yin,et al.  Observation of a transition from fluid to kinetic nonlinearities for langmuir waves driven by stimulated Raman backscatter. , 2005, Physical review letters.

[19]  Robert Dewar,et al.  Frequency Shift Due to Trapped Particles , 1972 .

[20]  W. Mori,et al.  Propagation and damping of nonlinear plasma wave packets. , 2009, Physical review letters.

[21]  D. Colombant,et al.  Increase in Rosseland mean opacity for inertial fusion hohlraum walls , 1998 .

[22]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[23]  Edward I. Moses,et al.  The National Ignition Facility: Laser Performance and First Experiments , 2005 .

[24]  D. Strozzi,et al.  Experimental evidence of predominantly transverse electron plasma waves driven by stimulated Raman scattering of picosecond laser pulses. , 2009, Physical review letters.

[25]  Milo R. Dorr,et al.  Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering , 2004 .

[26]  P Datte,et al.  Backscatter measurements for NIF ignition targets (invited). , 2010, The Review of scientific instruments.

[27]  Scott C. Wilks,et al.  Energy transfer between crossing laser beams , 1996 .

[28]  R J Wallace,et al.  The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited). , 2010, The Review of scientific instruments.

[29]  J. D. Moody,et al.  Laser–plasma interactions in ignition‐scale hohlraum plasmas , 1996 .

[30]  Max Tabak,et al.  Progress in target physics and design for heavy ion fusion , 1999 .

[31]  E Gullikson,et al.  Soft x-ray images of the laser entrance hole of ignition hohlraums. , 2012, The Review of scientific instruments.

[32]  James F. Drake,et al.  Parametric Instabilities of Electromagnetic Waves in Plasmas , 1974 .

[33]  Richard A. London,et al.  Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignitiona) , 2011 .

[34]  D. Russell,et al.  The reduced-description particle-in-cell model for the two plasmon decay instability , 2010 .

[35]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[36]  D. K. Bradley,et al.  Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .

[37]  P Bell,et al.  Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited). , 2010, The Review of scientific instruments.

[38]  T. M. O'Neil,et al.  Nonlinear Frequency Shift of an Electron Plasma Wave , 1972 .

[39]  P Bell,et al.  Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility. , 2010, The Review of scientific instruments.

[40]  R. B. Ehrlich,et al.  Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. , 2012, Physical review letters.

[41]  G B Zimmerman,et al.  Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule. , 2012, Physical review letters.

[42]  L. J. Atherton,et al.  Implosion dynamics measurements at the National Ignition Facility , 2012 .

[43]  Jochen Schein,et al.  Demonstration of Enhanced Radiation Drive in Hohlraums Made from a Mixture of High-Z Wall Materials , 2007 .

[44]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[45]  Joshua E. Rothenberg,et al.  Exploring the limits of the National Ignition Facility’s capsule coupling , 2000 .

[46]  S. Depierreux,et al.  Nonlinear modification of laser–plasma interaction processes under crossed laser beams , 1999 .

[47]  W. Mori,et al.  The relative importance of fluid and kinetic frequency shifts of an electron plasma wave , 2007 .

[48]  O. Landen,et al.  X-ray driven implosions at ignition relevant velocities on the National Ignition Facilitya) , 2013 .

[49]  J. D. Moody,et al.  Symmetry tuning for ignition capsules via the symcap techniquea) , 2011 .

[50]  E. Williams,et al.  A variational approach to parametric instabilities in inhomogeneous plasmas IV: The mixed polarization high-frequency instability , 1997 .

[51]  D. F. DuBois,et al.  Nonlinear saturation of stimulated Raman scattering in laser hot spots , 1999 .

[52]  D. Russell,et al.  A self-consistent trapping model of driven electron plasma waves and limits on stimulated Raman scatter , 2001 .

[53]  D. Russell,et al.  Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon–decay instability , 2012 .

[54]  L. J. Atherton,et al.  The velocity campaign for ignition on NIFa) , 2012 .

[55]  K. Bowers,et al.  Trapping induced nonlinear behavior of backward stimulated Raman scattering in multi-speckled laser beamsa) , 2011 .

[56]  W. Manheimer,et al.  Formation of Stationary Large Amplitude Waves in Plasmas , 1971 .

[57]  J. Moody,et al.  Strongly driven laser-plasma coupling , 1998 .

[58]  Moody,et al.  Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma. , 1996, Physical review letters.

[59]  Rose,et al.  Saturation of stimulated Raman scattering by the excitation of strong Langmuir turbulence. , 1993, Physical review letters.

[60]  P. Michel,et al.  National Ignition Campaign Hohlraum energeticsa) , 2009 .

[61]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[62]  Gilbert W. Collins,et al.  First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility , 2011 .