Test of the Einstein Equivalence Principle near the Galactic Center Supermassive Black Hole.

During its orbit around the four million solar mass black hole Sagittarius A* the star S2 experiences significant changes in gravitational potential. We use this change of potential to test one part of the Einstein equivalence principle: the local position invariance (LPI). We study the dependency of different atomic transitions on the gravitational potential to give an upper limit on violations of the LPI. This is done by separately measuring the redshift from hydrogen and helium absorption lines in the stellar spectrum during its closest approach to the black hole. For this measurement we use radial velocity data from 2015 to 2018 and combine it with the gravitational potential at the position of S2, which is calculated from the precisely known orbit of S2 around the black hole. This results in a limit on a violation of the LPI of |β_{He}-β_{H}|=(2.4±5.1)×10^{-2}. The variation in potential that we probe with this measurement is six magnitudes larger than possible for measurements on Earth, and a factor of 10 larger than in experiments using white dwarfs. We are therefore testing the LPI in a regime where it has not been tested before.

[1]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[2]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[3]  Y. Zou,et al.  The Astrophysical Journal , 2020 .

[4]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[5]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[6]  Feng Gao,et al.  What stellar orbit is needed to measure the spin of the Galactic centre black hole from astrometric data , 2018, 1802.08198.

[7]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[8]  K. Bouman,et al.  Dynamical Imaging with Interferometry , 2017, 1711.01286.

[9]  Jessica R. Lu,et al.  Investigating the Binarity of S0-2: Implications for Its Origins and Robustness as a Probe of the Laws of Gravity around a Supermassive Black Hole , 2017, 1709.04890.

[10]  R. Genzel,et al.  Twelve Years of Spectroscopic Monitoring in the Galactic Center: The Closest Look at S-stars near the Black Hole , 2017, 1708.06353.

[11]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[12]  Evaluating the New Automatic Method for the Analysis of Absorption Spectra Using Synthetic Spectra , 2017, 1704.08710.

[13]  Reinhard Genzel,et al.  An Update on Monitoring Stellar Orbits in the Galactic Center , 2016, 1611.09144.

[14]  V. Dzuba,et al.  Limits on gravitational Einstein equivalence principle violation from monitoring atomic clock frequencies during a year , 2016, 1608.06050.

[15]  H. C. Stempels,et al.  EELT-HIRES the high-resolution spectrograph for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[16]  Jessica R. Lu,et al.  AN IMPROVED DISTANCE AND MASS ESTIMATE FOR SGR A* FROM A MULTISTAR ORBIT ANALYSIS , 2016, 1607.05726.

[17]  G. Rousset,et al.  MICADO: first light imager for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[18]  K. Menten,et al.  Pinpointing the near-infrared location of Sgr A* by correcting optical distortion in the NACO imager , 2015, 1509.01941.

[19]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[20]  H. Falcke,et al.  Toward the event horizon—the supermassive black hole in the Galactic Center , 2013, 1311.1841.

[21]  V. Flambaum,et al.  Measuring chemical evolution and gravitational dependence of α using ultraviolet Fe v and Ni v transitions in white-dwarf spectra , 2013, 1310.2685.

[22]  R. Genzel,et al.  THE NUCLEAR CLUSTER OF THE MILKY WAY: TOTAL MASS AND LUMINOSITY , 2013, Proceedings of the International Astronomical Union.

[23]  J. Barrow,et al.  Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra. , 2013, Physical review letters.

[24]  Tests of local position invariance using continuously running atomic clocks , 2013, 1301.6145.

[25]  Jessica R. Lu,et al.  The Shortest-Known–Period Star Orbiting Our Galaxy’s Supermassive Black Hole , 2012, Science.

[26]  P. Saha,et al.  GALACTIC-CENTER S STARS AS A PROSPECTIVE TEST OF THE EINSTEIN EQUIVALENCE PRINCIPLE , 2011, 1105.0918.

[27]  Test of local position invariance at the detector “Dulkyn-1” , 2011 .

[28]  R. Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[29]  A. Eckart,et al.  The nuclear star cluster of the Milky Way: proper motions and mass , 2009, 0902.3892.

[30]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[31]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[32]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[33]  M. Reid Is there a Supermassive Black Hole at the Center of the Milky Way , 2008, 0808.2624.

[34]  Berkeley,et al.  On the Nature of the Fast-Moving Star S2 in the Galactic Center , 2007, 0711.3344.

[35]  V. Flambaum Variation of fundamental constants: theory and observations , 2007, 0705.3704.

[36]  N Ashby,et al.  Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers. , 2007, Physical review letters.

[37]  V. Flambaum,et al.  How changing physical constants and violation of local position invariance may occur , 2007, physics/0701220.

[38]  K. Menten,et al.  The Position of Sagittarius A*. III. Motion of the Stellar Cusp , 2006, astro-ph/0612164.

[39]  T. Alexander,et al.  Stellar Processes Near the Massive Black Hole in the Galactic Center , 2005, astro-ph/0508106.

[40]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[41]  Bernard Delabre,et al.  First light of SINFONI at the VLT , 2004 .

[42]  M. F. Radioastronomie,et al.  The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A* , 2004, astro-ph/0408107.

[43]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[44]  A. M. Ghez,et al.  Full Three Dimensional Orbits for Multiple Stars on Close Approaches to the Central Supermassive Black Hole , 2003, astro-ph/0303151.

[45]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[46]  A. Bauch,et al.  New experimental limit on the validity of local position invariance , 2002 .

[47]  Francois Rigaut,et al.  Design of the Nasmyth adaptive optics system (NAOS) of the VLT , 1998, Astronomical Telescopes and Instrumentation.

[48]  Peter Bizenberger,et al.  CONICA: the high-resolution near-infrared camera for the ESO VLT , 1998, Astronomical Telescopes and Instrumentation.

[49]  L. Wallace,et al.  Medium-Resolution Spectra of Normal Stars in the K Band , 1997 .

[50]  Thibault Damour Testing the equivalence principle: why and how? , 1996 .

[51]  Godone,et al.  Null gravitational redshift experiment with nonidentical atomic clocks. , 1995, Physical review. D, Particles and fields.

[52]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[53]  Solar Gravitational Redshift from the Infrared Oxygen Triplet , 1991 .

[54]  Campbell,et al.  Test of the gravitational redshift effect at Saturn. , 1989, Physical review letters.

[55]  Richardson,et al.  Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne. , 1989, Physical review letters.

[56]  Physical Review Letters 63 , 1989 .

[57]  B. Farrell,et al.  Test of the principle of equivalence by a null gravitational red-shift experiment , 1983 .

[58]  M. W. Levine,et al.  A test of the equivalence principle using a space-borne clock , 1979 .

[59]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[60]  J. L. Snider NEW MEASUREMENT OF THE SOLAR GRAVITATIONAL RED SHIFT. , 1972 .

[61]  R. E. Jenkins A satellite observation of the relativistic Doppler shift. , 1969 .

[62]  R. Pound,et al.  Effect of Gravity on Gamma Radiation , 1965 .

[63]  J. Brault The Gravitational Red Shift in the Solar Spectrum. , 1962 .

[64]  L. Schiff On Experimental Tests of the General Theory of Relativity , 1960 .

[65]  R. Pound,et al.  Gravitational Red-Shift in Nuclear Resonance , 1959 .