Symbiotic Ambient Backscatter Systems: Outage Behavior and Ergodic Capacity

This article investigates a symbiotic ambient backscatter communication (AmBC) system, where for the primary system, a source node T1 transmits information to a destination node T2. Whereas for the backscatter system, by riding on T1’s signal, the backscatter device passively conveys its own information <inline-formula> <tex-math notation="LaTeX">$c(n)$ </tex-math></inline-formula> to T1 and T2 via backscattering. For such, the coexistence outage probability (COP) and ergodic capacity (EC) of the AmBC system are characterized for three cases of coexistence constraints, i.e., 1) both T1 and T2 decode <inline-formula> <tex-math notation="LaTeX">$c(n)$ </tex-math></inline-formula> (Case I); 2) only T2 decodes <inline-formula> <tex-math notation="LaTeX">$c(n)$ </tex-math></inline-formula> (Case II); and 3) only T1 decodes <inline-formula> <tex-math notation="LaTeX">$c(n)$ </tex-math></inline-formula> (Case III). It is analytically shown that for sufficiently high transmit signal-to-noise ratio (SNR), the COP obeys the scaling law of <inline-formula> <tex-math notation="LaTeX">$({1}/{\sqrt {P_{s}}})$ </tex-math></inline-formula> (with <inline-formula> <tex-math notation="LaTeX">$P_{s}$ </tex-math></inline-formula> denoting T1’s transmit power) for Cases I and III, whereas its scaling law is determined by <inline-formula> <tex-math notation="LaTeX">$([{\mathrm {log}(P_{s})}]/{P_{s}})$ </tex-math></inline-formula> as well as <inline-formula> <tex-math notation="LaTeX">$({1}/{P_{s}})$ </tex-math></inline-formula> for Case II. In addition, it is shown that the restriction condition of decoding <inline-formula> <tex-math notation="LaTeX">$c(n)$ </tex-math></inline-formula> at T1 results in a dominating term <inline-formula> <tex-math notation="LaTeX">$({1}/{\sqrt {P_{s}}})$ </tex-math></inline-formula> for the COP at high SNR, whereas the restriction condition of decoding <inline-formula> <tex-math notation="LaTeX">$c(n)$ </tex-math></inline-formula> at T2 results in an infinitesimal relative to <inline-formula> <tex-math notation="LaTeX">$({1}/{\sqrt {P_{s}}})$ </tex-math></inline-formula>. It is also shown that for different cases, the effects of the T1–T2 channel statistics on the COP are significantly different. However, unlike the metric of COP, for the EC, the impacts of decoding constraints of <inline-formula> <tex-math notation="LaTeX">$c(n)$ </tex-math></inline-formula> gradually disappear at high SNR and the ECs of the backscatter channels for Cases II and III approach, respectively, toward the counterpart for Case I.

[1]  Chintha Tellambura,et al.  Capacity Analysis for Wireless Symbiotic Communication Systems With BPSK Tags Under Sensitivity Constraint , 2022, IEEE Communications Letters.

[2]  H. Poor,et al.  Mutualistic Mechanism in Symbiotic Radios: When Can the Primary and Secondary Transmissions be Mutually Beneficial? , 2022, IEEE Transactions on Wireless Communications.

[3]  Yiyang Pei,et al.  A Cross-Layer Analysis for Symbiotic Network Using CSMA/CN Protocol , 2021, IEEE Internet of Things Journal.

[4]  Z. Ding Harvesting Devices’ Heterogeneous Energy Profiles and QoS Requirements in IoT: WPT-NOMA vs BAC-NOMA , 2020, IEEE Transactions on Communications.

[5]  Daniel Benevides da Costa,et al.  Backscatter Cooperation in NOMA Communications Systems , 2020, IEEE Transactions on Wireless Communications.

[6]  Pedro Henrique Juliano Nardelli,et al.  Ambient backscatter communications over NOMA downlink channels , 2020, China Communications.

[7]  Daniel Benevides da Costa,et al.  Outage Analysis for Cooperative Ambient Backscatter Systems , 2020, IEEE Wireless Communications Letters.

[8]  Dong Li Capacity of Backscatter Communication With Frequency Shift in Rician Fading Channels , 2019, IEEE Wireless Communications Letters.

[9]  Fengye Hu,et al.  Capacity of Backscatter Communication Systems With Tag Selection , 2019, IEEE Transactions on Vehicular Technology.

[10]  Mohamed-Slim Alouini,et al.  Ergodic Rate Analysis of Cooperative Ambient Backscatter Communication , 2019, IEEE Wireless Communications Letters.

[11]  Ying-Chang Liang,et al.  Cooperative Ambient Backscatter System: A Symbiotic Radio Paradigm for Passive IoT , 2019, IEEE Wireless Communications Letters.

[12]  Ying-Chang Liang,et al.  Resource Allocation for Symbiotic Radio System With Fading Channels , 2019, IEEE Access.

[13]  Lin Zhang,et al.  Backscatter-NOMA: A Symbiotic System of Cellular and Internet-of-Things Networks , 2019, IEEE Access.

[14]  Xiaojun Yuan,et al.  Constellation Learning-Based Signal Detection for Ambient Backscatter Communication Systems , 2019, IEEE Journal on Selected Areas in Communications.

[15]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[16]  Min Young Chung,et al.  Outage Probability and Throughput Analysis of SWIPT Enabled Cognitive Relay Network With Ambient Backscatter , 2018, IEEE Internet of Things Journal.

[17]  Ying-Chang Liang,et al.  Cooperative Ambient Backscatter Communications for Green Internet-of-Things , 2018, IEEE Internet of Things Journal.

[18]  Dong In Kim,et al.  Ambient Backscatter Communications: A Contemporary Survey , 2017, IEEE Communications Surveys & Tutorials.

[19]  Chintha Tellambura,et al.  Outage Analysis of Ambient Backscatter Communication Systems , 2017, IEEE Communications Letters.

[20]  Yiyang Pei,et al.  Modulation in the Air: Backscatter Communication Over Ambient OFDM Carrier , 2017, IEEE Transactions on Communications.

[21]  Saman Atapattu,et al.  Ambient Backscatter Communication Systems: Capacity and Outage Performance Analysis , 2018, IEEE Access.

[22]  Kaibin Huang,et al.  Wirelessly Powered Backscatter Communication Networks: Modeling, Coverage and Capacity , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[23]  Daniel Benevides da Costa,et al.  Role Selection Cooperative Systems With Energy Harvesting Relays , 2016, IEEE Transactions on Wireless Communications.

[24]  Daniel Benevides da Costa,et al.  Distributed Role Selection With ANC and TDBC Protocols in Two-Way Relaying Systems , 2015, IEEE Transactions on Communications.

[25]  Sachin Katti,et al.  BackFi: High Throughput WiFi Backscatter , 2015, SIGCOMM.

[26]  Angli Liu,et al.  Turbocharging ambient backscatter communication , 2014, SIGCOMM.

[27]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[28]  Daniel Benevides da Costa,et al.  A Novel Distributed Antenna Selection Scheme for Fixed-Gain Amplify-and-Forward Relaying Systems , 2012, IEEE Transactions on Vehicular Technology.

[29]  Taneli Riihonen,et al.  Mitigation of Loopback Self-Interference in Full-Duplex MIMO Relays , 2011, IEEE Transactions on Signal Processing.

[30]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[31]  John Cosmas,et al.  Performance of an Echo Canceller and Channel Estimator for On-Channel Repeaters in DVB-T/H Networks , 2007, IEEE Transactions on Broadcasting.

[32]  Neil Genzlinger A. and Q , 2006 .

[33]  Michael Gastpar,et al.  Cooperative strategies and capacity theorems for relay networks , 2005, IEEE Transactions on Information Theory.

[34]  Makoto Sasaki,et al.  A study of a loop interference canceller for the relay stations in an SFN for digital terrestrial broadcasting , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[35]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[36]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[37]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .