Effects of Steam Injection on the Performance of Gas Turbine Power Cycles

The effect of injecting steam generated by exhaust gas waste heat into a gas turbine with 3060°R turbine inlet temperature has been analyzed. Two alternate steam injection cycles are compared with a combined cycle using a conventional steam bottoming cycle. A range of compression ratios (8, 12, 16, and 20) and water mass injection ratios (0 to 0.4) were analyzed to determine effect on net turbine power output per pound of air and cycle thermodynamic efficiency. A water/fuel cost tradeoff analysis is also provided. The results indicate promising performance and economic advantages of steam injected cycles relative to more conventional utility power cycles. Application to coal-fired configuration is briefly discussed.