Efficiency optimization of the square pulse pumped terawatt level optical parametric chirped pulse amplifier

Numerical simulations and analysis of a very efficient and stable non-collinear Optical Parametric Chirped Pulse Amplification (OPCPA) femtosecond system are presented. The system is optimized for a long (nanosecond), rectangular temporal profile and a flat-top spatial profile of the pump laser pulse. We show that a two stage system consisting of a multipass preamplifier and a time-sheared power amplifier operating around 850 nm and pumped by a 532 nm pulse can amplify pulses directly from a femtosecond oscillator up to multi-terawat levels with quantum efficiencies as high as 0.9. We also discuss practical schemes of the few-cycle multi-terawatt OPCPA systems employing different nonlinear crystals. The results of the Monte-Carlo simulations are used to balance the stability and efficiency of the parametric amplifier system.

[1]  G. Gurzadyan,et al.  Handbook of nonlinear optical crystals , 1991 .

[2]  L. DiMauro,et al.  Aberration-free stretcher design for ultrashort-pulse amplification. , 1995, Optics letters.

[3]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[4]  Ferenc Krausz,et al.  90 mJ parametric chirped pulse amplification of 10 fs pulses. , 2006, Optics express.

[5]  K. Eikema,et al.  Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification. , 2005, Optics express.

[6]  Igor Jovanovic,et al.  Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers. , 2002, Applied optics.

[7]  Ferenc Krausz,et al.  Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. , 2009, Optics letters.

[8]  C. Radzewicz,et al.  Multi-terawatt chirped pulse optical parametric amplifier with a time-shear power amplification stage. , 2009, Optics express.

[9]  Mark A. Henesian,et al.  Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion , 1994 .

[10]  R. Wallenstein,et al.  Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers , 2003 .

[11]  H. Kiriyama,et al.  Prepulse-free, multi-terawatt, sub-30-fs laser system. , 2006, Optics express.

[12]  Masood Ghotbi,et al.  Optical second harmonic generation properties of BiB3O6. , 2004, Optics express.

[13]  J. Zuegel,et al.  Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality. , 2003, Optics express.

[14]  D. A. Roberts,et al.  Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions , 1992 .

[15]  A. Piskarskas,et al.  Multimillijoule chirped parametric amplification of few-cycle pulses. , 2005, Optics letters.

[16]  Ian N. Ross,et al.  The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers , 1997 .

[17]  N. N. Rukavishnikov,et al.  200 TW 45 fs laser based on optical parametric chirped pulse amplification , 2006 .

[18]  Koichi Yamakawa,et al.  Numerical analysis of optical parametric chirped pulse amplification with time delay. , 2003, Optics express.

[19]  Hisanori Fujita,et al.  Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals , 1994 .

[20]  K. Kokh,et al.  Growth of high quality large size LBO crystals for high energy second harmonic generation , 2010 .

[21]  C. Homann,et al.  Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping. , 2010, Optics express.

[22]  Jens Limpert,et al.  Theoretical analysis of the gain bandwidth for noncollinear parametric amplification of ultrafast pulses , 2007 .

[23]  Audrius Dubietis,et al.  Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal , 1992 .

[24]  Ruxin Li,et al.  Multiterawatt laser system based on optical parametric chirped pulse amplification. , 2002, Optics letters.

[25]  R. Wallenstein,et al.  Experimental investigation of the spectro-temporal dynamics of the light pulses of Q-switched Nd:YAG lasers and nanosecond optical parametric oscillators , 2004 .

[26]  D. Rytz,et al.  Bismuth triborate (BiB3O6) optical parametric oscillators , 2005 .

[27]  J. Zuegel,et al.  High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses. , 2003, Optics letters.

[28]  Igor Jovanovic,et al.  Hybrid chirped-pulse amplification. , 2002, Optics letters.

[29]  C. Radzewicz,et al.  Multipass non-collinear optical parametric amplifier for femtosecond pulses. , 2006, Optics express.

[30]  A. Piskarskas,et al.  Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams , 2002 .

[31]  Karoly Osvay,et al.  Analysis and optimization of optical parametric chirped pulse amplification , 2002 .

[32]  A. Majchrowski,et al.  Optical Properties of Bismuth Triborate (BIBO) Single Crystals , 2005 .

[33]  S. V. Bulanov,et al.  Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system , 2009 .