Quantitative phase microscopy of red blood cells during planar trapping and propulsion† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8lc00356d

Here, we have combined quantitative phase microscopy and waveguide trapping techniques to study changes in RBC morphology during planar trapping and transportation.

[1]  J. Cook Nonsolvent Water in Human Erythrocytes , 1967, The Journal of general physiology.

[2]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[3]  A W Jay Viscoelastic properties of the human red blood cell membrane. I. Deformation, volume loss, and rupture of red cells in micropipettes. , 1973, Biophysical journal.

[4]  E. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. , 1983, Biophysical journal.

[5]  P. J. Abatti,et al.  Measurement of human red blood cell deformability using a single micropore on a thin Si/sub 3/N/sub 4/ film , 1991, IEEE Transactions on Biomedical Engineering.

[6]  C. César,et al.  MECHANICAL PROPERTIES OF STORED RED BLOOD CELLS USING OPTICAL TWEEZERS , 1998 .

[7]  R. Gauthier,et al.  Analysis of the behaviour of erythrocytes in an optical trapping system. , 2000, Optics express.

[8]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[9]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[10]  Daniel T Chiu,et al.  A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Gabriel Popescu,et al.  Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. , 2004, Optics letters.

[12]  Khyati Mohanty,et al.  Dynamics of Interaction of RBC with optical tweezers. , 2005, Optics express.

[13]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[14]  J Fedeli,et al.  Optical manipulation of microparticles and cells on silicon nitride waveguides. , 2005, Optics express.

[15]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[16]  Subra Suresh,et al.  Cytoskeletal dynamics of human erythrocyte , 2007, Proceedings of the National Academy of Sciences.

[17]  D. Deamer,et al.  Planar optofluidic chip for single particle detection, manipulation, and analysis. , 2007, Lab on a chip.

[18]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[19]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[20]  D. Néel,et al.  Optical transport of semiconductor nanowires on silicon nitride waveguides , 2009 .

[21]  N. Sessions,et al.  Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles , 2009, IEEE Photonics Technology Letters.

[22]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[23]  Gabriel Popescu,et al.  Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy. , 2009, The journal of physical chemistry. A.

[24]  Carlos Angulo Barrios,et al.  Optical Slot-Waveguide Based Biochemical Sensors , 2009, Sensors.

[25]  Victor Guallar,et al.  Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. , 2009, Biophysical journal.

[26]  J. McWhirter,et al.  Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries , 2009, Proceedings of the National Academy of Sciences.

[27]  T. Huser,et al.  Optical trapping and propulsion of red blood cells on waveguide surfaces. , 2010, Optics express.

[28]  G. Karniadakis,et al.  Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems , 2010, Annals of Biomedical Engineering.

[29]  Subra Suresh,et al.  Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease , 2010, MRS bulletin.

[30]  Marc Thellier,et al.  The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. , 2011, Blood.

[31]  Valentina Preziosi,et al.  Microfluidics analysis of red blood cell membrane viscoelasticity. , 2011, Lab on a chip.

[32]  S. Jacques,et al.  Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. , 2012, Physical review letters.

[33]  Barry R. Masters,et al.  Quantitative Phase Imaging of Cells and Tissues , 2012 .

[34]  W. Marsden I and J , 2012 .

[35]  I. J. van der Klei,et al.  The Impact of Peroxisomes on Cellular Aging and Death , 2012, Front. Oncol..

[36]  Subra Suresh,et al.  Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. , 2012, Acta biomaterialia.

[37]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[38]  Samarendra K. Mohanty,et al.  Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells , 2013 .

[39]  O. Hellesø,et al.  Estimation of Propagation Losses for Narrow Strip and Rib Waveguides , 2014, IEEE Photonics Technology Letters.

[40]  Gabriel Popescu,et al.  Optical Assay of Erythrocyte Function in Banked Blood , 2014, Scientific Reports.

[41]  Pierre Marquet,et al.  Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders , 2014, Neurophotonics.

[42]  YongKeun Park,et al.  Profiling individual human red blood cells using common-path diffraction optical tomography , 2014, Scientific Reports.

[43]  Tsan-Wen Lu,et al.  Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers. , 2014, Lab on a chip.

[44]  R Baets,et al.  Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. , 2014, Biomedical optics express.

[45]  Balpreet Singh Ahluwalia,et al.  Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. , 2015, The Analyst.

[46]  Dalip Singh Mehta,et al.  Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity , 2015 .

[47]  Sung-Hee Hong,et al.  Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy , 2015, Scientific Reports.

[48]  Adam Wax,et al.  Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography. , 2015, Biomedical optics express.

[49]  M. Doble,et al.  Characterization and sorting of cells based on stiffness contrast in a microfluidic channel , 2016 .

[50]  Subra Suresh,et al.  Biomechanics of red blood cells in human spleen and consequences for physiology and disease , 2016, Proceedings of the National Academy of Sciences.

[51]  Ø. Helle,et al.  Rib waveguides for trapping and transport of particles. , 2016, Optics express.

[52]  Dalip Singh Mehta,et al.  Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source. , 2016, Optics letters.

[53]  Zach DeVito,et al.  Opt , 2017 .

[54]  T. Huser,et al.  Chip-based wide field-of-view nanoscopy , 2017, Nature Photonics.

[55]  M. Doble,et al.  A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel. , 2017, Lab on a chip.

[56]  Tsuyoshi Murata,et al.  {m , 1934, ACML.