Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry.

The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

[1]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[2]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[3]  John B. Asbury,et al.  Random lasing in organo-lead halide perovskite microcrystal networks , 2014 .

[4]  David B. Mitzi,et al.  Organic-inorganic electronics , 2001, IBM J. Res. Dev..

[5]  K. Catchpole,et al.  Optics and Light Trapping for Tandem Solar Cells on Silicon , 2014, IEEE Journal of Photovoltaics.

[6]  Hiroshi Suga,et al.  Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II) , 1990 .

[7]  D. Aspnes,et al.  Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry , 1979 .

[8]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[9]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[10]  MaedaMasaki,et al.  Dielectric Studies on CH 3NH 3PbX 3 (X = Cl and Br) Single Cystals , 2013 .

[11]  Christophe Ballif,et al.  Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells , 2014, IEEE Journal of Photovoltaics.

[12]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[13]  Bloomer,et al.  Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. , 1986, Physical review. B, Condensed matter.

[14]  T. Miyasaka,et al.  Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2) , 2006 .

[15]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[16]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[17]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[18]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[19]  Teruya Ishihara,et al.  Optical properties of PbI-based perovskite structures , 1994 .

[20]  N. Kitazawa,et al.  Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals , 2002 .

[21]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[22]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[23]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[24]  M. Johnston,et al.  Optical Description of Mesostructured Organic-Inorganic Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[25]  J. Sites,et al.  Performance Limits and Status of Single-Junction Solar Cells With Emphasis on CIGS , 2015, IEEE Journal of Photovoltaics.

[26]  T. White,et al.  Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. , 2014, Optics express.

[27]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[28]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[29]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[30]  M. Treviño,et al.  Noradrenergic ‘Tone’ Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity , 2012, Scientific Reports.

[31]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[32]  Teruya Ishihara,et al.  Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]4- Octahedra , 1994 .

[33]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[34]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[35]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[36]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[37]  Chien-Yu Chen,et al.  Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells , 2015 .

[38]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[39]  M. Maeda,et al.  Dielectric Studies on CH3NH3PbX3(X = Cl and Br) Single Cystals , 1997 .

[40]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[41]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[42]  Edward H Sargent,et al.  Conformal organohalide perovskites enable lasing on spherical resonators. , 2014, ACS nano.

[43]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[44]  Jun Lin,et al.  Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering , 2010 .