Low Energy Phases of Bi Monolayer Predicted by Structure Search in Two Dimensions.

We employ an ab-initio structure search algorithm to explore the configurational space of bismuth in quasi-two dimensions. A confinement potential is introduced to restrict the movement of atoms within a pre-defined thickness to find the stable and metastable forms of monolayer Bi. In addition to the two known low-energy structures (puckered monoclinic and buckled hexagonal), our calculations predict three new phases: α, β, and γ. Each phase exhibits peculiar electronic properties, ranging from metallic (α and γ) to semiconducting (puckered monoclinic, buckled hexagonal, and β). Topologically non trivial features are predicted for buckled hexagonal and γ phases. We also remark on the role of 5d electrons on the electronic properties of Bi monolayer. We conclude that Bi provides a rich playground to study distortion-mediated metal-insulator phase transitions in quasi-2D.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol , 2019, Chemical science.

[2]  A. Gazsó,et al.  Advanced Materials , 2019, Springer Proceedings in Physics.

[3]  M. Amsler Minima Hopping Method for Predicting Complex Structures and Chemical Reaction Pathways , 2018, Handbook of Materials Modeling.

[4]  Aldo H. Romero,et al.  Proximity‐Induced Topological Transition and Strain‐Induced Charge Transfer in Graphene/MoS 2 Bilayer Heterostructures , 2018, Handbook of Graphene.

[5]  K. Jacobsen,et al.  The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals , 2018, 2D Materials.

[6]  C. Felser,et al.  Bursting at the seams: Rippled monolayer bismuth on NbSe2 , 2018, Science Advances.

[7]  S. Goedecker,et al.  Two-Dimensional Hexagonal Sheet of TiO2 , 2017 .

[8]  Kamal Choudhary,et al.  High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory , 2017, Scientific Reports.

[9]  M. Pumera,et al.  2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus , 2017, Advanced materials.

[10]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[11]  D. Raabe,et al.  Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg–Li binary system by first principles calculations , 2017 .

[12]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[13]  Gang Li,et al.  Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material , 2016, Science.

[14]  Guillermo Avendaño-Franco,et al.  Firefly Algorithm for Structural Search. , 2016, Journal of chemical theory and computation.

[15]  G. Volovik Topological Lifshitz transitions , 2016, 1606.08318.

[16]  Albert V. Davydov,et al.  MPInterfaces: A Materials Project based Python tool for high-throughput computational screening of interfacial systems , 2016, 1602.07784.

[17]  H. Zeng,et al.  Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. , 2016, Angewandte Chemie.

[18]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[19]  P. Jha,et al.  Ab-initio study of dynamical properties of two dimensional MoS2 under strain , 2015 .

[20]  E K U Gross,et al.  Laser-induced demagnetization at ultrashort time scales: predictions of TDDFT. , 2015, Journal of chemical theory and computation.

[21]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[22]  Changfeng Chen,et al.  Phosphorene: Fabrication, Properties, and Applications. , 2015, The journal of physical chemistry letters.

[23]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[24]  Sharath Sriram,et al.  Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. , 2015, Small.

[25]  Jens Martin,et al.  Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). , 2015, Nano letters.

[26]  X. Gong,et al.  Prediction of silicon-based layered structures for optoelectronic applications. , 2014, Journal of the American Chemical Society.

[27]  Pablo Jarillo-Herrero,et al.  Two-dimensional crystals: phosphorus joins the family. , 2014, Nature nanotechnology.

[28]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[29]  Richard G. Hennig,et al.  Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts , 2013 .

[30]  K. Chapman,et al.  Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2. , 2013, Journal of the American Chemical Society.

[31]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[32]  Hui Bai,et al.  Binary nature of monolayer boron sheets from ab initio global searches. , 2013, The Journal of chemical physics.

[33]  Yanming Ma,et al.  An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. , 2012, The Journal of chemical physics.

[34]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[35]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[36]  Qiang Zhu,et al.  Evolutionary metadynamics: a novel method to predict crystal structures , 2012, 1204.3650.

[37]  S. Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[38]  G. Schatz The journal of physical chemistry letters , 2009 .

[39]  S. Goedecker,et al.  A minima hopping study of all-atom protein folding and structure prediction. , 2009, The journal of physical chemistry. B.

[40]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[41]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[42]  M. Kral,et al.  A crystallographic orientation transition and early stage growth characteristics of thin Bi films on HOPG , 2005 .

[43]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[44]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[45]  F. Jensen Introduction to Computational Chemistry , 1998 .

[46]  J. Pannetier,et al.  Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.

[47]  Sobhit Singh,et al.  Structural Prediction and Theoretical Characterization of Bi-Sb Binaries: Spin-Orbit Coupling Effects , 2018 .

[48]  M. Amsler Crystal structure prediction based on density functional theory , 2014 .

[49]  Xianfan Xu,et al.  Phosphorene: An Unexplored 2D Semiconductor with a High Hole , 2014 .

[50]  R. Ramesh,et al.  Current Opinion in Solid State and Materials Science , 2012 .

[51]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[52]  Timothy S Bush,et al.  Evolutionary programming techniques for predicting inorganic crystal structures , 1995 .

[53]  K. Takarabe Optical Properties of InS under High Pressure , 1988 .