Instanton rate constant calculations close to and above the crossover temperature

Canonical instanton theory is known to overestimate the rate constant close to a system‐dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi‐classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by‐product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller–Brown potential, methylhydroxycarbene → acetaldehyde and H2 + OH → H + H2O. © 2017 Wiley Periodicals, Inc.

[1]  H. Kleinert Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .

[2]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[3]  R. Marcus,et al.  Semiclassical evaluation of kinetic isotope effects in 13-atomic system. , 2012, The Journal of chemical physics.

[4]  Jianshu Cao,et al.  A unified framework for quantum activated rate processes. I. General theory , 1996 .

[5]  W. D. Allen,et al.  Methylhydroxycarbene: Tunneling Control of a Chemical Reaction , 2011, Science.

[6]  D. Makarov,et al.  Partition function of a particle coupled to an arbitrary heat bath in the quasienergy representation for the path integral , 1992 .

[7]  M. Kryvohuz Calculation of kinetic isotope effects for intramolecular hydrogen shift reactions using semiclassical instanton approach. , 2014, The journal of physical chemistry. A.

[8]  Mills,et al.  Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. , 1994, Physical review letters.

[9]  S. Andersson,et al.  Tunnelling in the O + CO reaction , 2010 .

[10]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[11]  J. Kästner,et al.  Atom Tunneling in Chemistry. , 2016, Angewandte Chemie.

[12]  J. Kästner,et al.  Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp06457d Click here for additional data file. , 2016, Physical chemistry chemical physics : PCCP.

[13]  Jeremy O. Richardson,et al.  Stress Test for Quantum Dynamics Approximations: Deep Tunneling in the Muonium Exchange Reaction D + HMu → DMu + H. , 2014, The journal of physical chemistry letters.

[14]  Jun Chen,et al.  A global potential energy surface for the H2 + OH ↔ H2O + H reaction using neural networks. , 2013, The Journal of chemical physics.

[15]  Andri Arnaldsson Calculation of quantum mechanical rate constants directly from ab initio atomic forces , 2007 .

[16]  R. Bell The tunnel effect correction for parabolic potential barriers , 1959 .

[17]  Johannes Kästner,et al.  Deuterium enrichment of interstellar methanol explained by atom tunneling. , 2011, The journal of physical chemistry. A.

[18]  Johannes Kästner,et al.  Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations† †Electronic supplementary information (ESI) available: Geometric details, lists of calculated rate constants. See DOI: 10.1039/c6cp05727f Click here for additional data fi , 2016, Physical chemistry chemical physics : PCCP.

[19]  Gregory K. Schenter,et al.  Generalized path integral based quantum transition state theory , 1997 .

[20]  S. Ioppolo,et al.  Importance of tunneling in H-abstraction reactions by OH radicals - The case of CH4 + OH studied through isotope-substituted analogs , 2016, 1612.07027.

[21]  S. Coleman,et al.  Quantum Tunneling and Negative Eigenvalues , 1988 .

[22]  M. Kryvohuz Semiclassical instanton approach to calculation of reaction rate constants in multidimensional chemical systems. , 2011, The Journal of chemical physics.

[23]  J. Kästner Path length determines the tunneling decay of substituted carbenes. , 2013, Chemistry.

[24]  Johannes Kästner,et al.  Adaptive integration grids in instanton theory improve the numerical accuracy at low temperature. , 2011, The Journal of chemical physics.

[25]  Numerical study of metastability due to tunneling: The quantum string method , 2005, cond-mat/0509076.

[26]  S. Coleman The Fate of the False Vacuum. 1. Semiclassical Theory , 1977 .

[27]  P. Schreiner,et al.  Tunnelling control of chemical reactions--the organic chemist's perspective. , 2012, Organic & biomolecular chemistry.

[28]  I. Gel'fand,et al.  Integration in Functional Spaces and its Applications in Quantum Physics , 1960 .

[29]  J. Kästner,et al.  Reaction rates and kinetic isotope effects of H2 + OH → H2O + H. , 2016, The Journal of chemical physics.

[30]  C. Eckart The Penetration of a Potential Barrier by Electrons , 1930 .

[31]  G. Voth,et al.  Rigorous formulation of quantum transition state theory and its dynamical corrections , 1989 .

[32]  Ian Affleck,et al.  Quantum Statistical Metastability , 1981 .

[33]  T. Goumans Isotope effects for formaldehyde plus hydrogen addition and abstraction reactions: rate calculations including tunnelling , 2011 .

[34]  J. Kästner,et al.  Tunneling above the crossover temperature. , 2014, The journal of physical chemistry. A.

[35]  B. Garraway,et al.  Wave-packet dynamics: new physics and chemistry in femto-time , 1995 .

[36]  Johannes Kästner,et al.  Theory and simulation of atom tunneling in chemical reactions , 2014 .

[37]  Hans-Joachim Werner,et al.  Role of tunneling in the enzyme glutamate mutase. , 2012, The journal of physical chemistry. B.

[38]  Johannes Kästner,et al.  Kinetic isotope effects calculated with the instanton method , 2011, J. Comput. Chem..

[39]  K. Müller,et al.  Location of saddle points and minimum energy paths by a constrained simplex optimization procedure , 1979 .

[40]  M. Kryvohuz On the derivation of semiclassical expressions for quantum reaction rate constants in multidimensional systems. , 2013, The Journal of chemical physics.

[41]  Johannes Kästner,et al.  Locating Instantons in Many Degrees of Freedom. , 2011, Journal of chemical theory and computation.

[42]  T. Schwidder Macroscopic quantum tunneling in Bose-Einstein condensates , 2013 .

[43]  Hannes Jónsson,et al.  Simulation of surface processes , 2011, Proceedings of the National Academy of Sciences.

[44]  James S. Langer,et al.  Theory of the condensation point , 1967 .

[45]  Q. Cui,et al.  Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II. , 2003, Journal of the American Chemical Society.

[46]  J. Kästner,et al.  Rate constants from instanton theory via a microcanonical approach. , 2017, The Journal of chemical physics.

[47]  Hannes Jónsson,et al.  Path Optimization with Application to Tunneling , 2010, PARA.

[48]  A. Fernández-Ramos,et al.  Proton tunnelling in polyatomic molecules: A direct-dynamics instanton approach , 1999 .

[49]  S. Althorpe On the equivalence of two commonly used forms of semiclassical instanton theory. , 2011, The Journal of chemical physics.

[50]  T. Goumans Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling , 2011 .

[51]  Stuart C Althorpe,et al.  Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: Connection with semiclassical instanton theory. , 2009, The Journal of chemical physics.

[52]  J. Kästner,et al.  Hydrogenation and Deuteration of C2H2 and C2H4 on Cold Grains: A Clue to the Formation Mechanism of C2H6 with Astronomical Interest , 2017 .

[53]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[54]  Johannes Kästner,et al.  Hydrogen-atom tunneling could contribute to H2 formation in space. , 2010, Angewandte Chemie.

[55]  A. Patrascioiu,et al.  Instanton Contributions to the Energy Spectrum of a One-Dimensional System , 1977 .

[56]  Hannes Jónsson,et al.  Comparison of quantum dynamics and quantum transition state theory estimates of the H + CH4 reaction rate. , 2009, The journal of physical chemistry. A.

[57]  Jeremy O. Richardson Microcanonical and thermal instanton rate theory for chemical reactions at all temperatures. , 2016, Faraday discussions.

[58]  William H. Miller,et al.  Semiclassical transition state theory for nonseparable systems: Application to the collinear H+H2 reaction , 1975 .

[59]  Jeremy O Richardson,et al.  Derivation of instanton rate theory from first principles. , 2015, The Journal of chemical physics.

[60]  J. Langer Statistical theory of the decay of metastable states , 1969 .

[61]  G. Gamow,et al.  Zur Quantentheorie des Atomkernes , 1928 .

[62]  Curtis G. Callan,et al.  Fate of the false vacuum. II. First quantum corrections , 1977 .

[63]  W. Miller Semiclassical limit of quantum mechanical transition state theory for nonseparable systems , 1975 .

[64]  Johannes Kastner,et al.  Formation of the prebiotic molecule NH$_2$CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations , 2016 .

[65]  Walter Thiel,et al.  DL-FIND: an open-source geometry optimizer for atomistic simulations. , 2009, The journal of physical chemistry. A.