Current limits of structural biology: The transient interaction between cytochrome c6 and photosystem I

[1]  P. Fromme,et al.  The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis , 2020, Science Advances.

[2]  Mei Li,et al.  Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex , 2020, Nature Plants.

[3]  Mei Li,et al.  Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase , 2020, Nature Communications.

[4]  N. Miyazaki,et al.  Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I , 2019, Nature Plants.

[5]  Dewight R Williams,et al.  The structure of the stress-induced photosystem I–IsiA antenna supercomplex , 2019, Nature Structural & Molecular Biology.

[6]  F. Hartl,et al.  Rubisco condensate formation by CcmM in β-carboxysome biogenesis , 2019, Nature.

[7]  F. Hartl,et al.  Rubisco condensate formation by CcmM in beta-carboxysome biogenesis , 2018 .

[8]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[9]  N. Nelson,et al.  Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. , 2018, Biochimica et biophysica acta. Bioenergetics.

[10]  Mei Li,et al.  Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II , 2018, Science.

[11]  W. Schuhmann,et al.  Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes , 2018, Nature Communications.

[12]  Mahdi Hejazi,et al.  Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus , 2018, The Journal of Biological Chemistry.

[13]  T. Ikegami,et al.  X-ray structure of an asymmetrical trimeric ferredoxin–photosystem I complex , 2018, Nature Plants.

[14]  J. Huiskonen Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes , 2018, Bioscience reports.

[15]  Z. Rao,et al.  Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies , 2018, Nature Microbiology.

[16]  R. Frese,et al.  Photosynthetic reaction center-based biophotovoltaics , 2017 .

[17]  F. Hartl,et al.  Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase. , 2017, Molecular cell.

[18]  K. Schulten,et al.  Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids[CC-BY] , 2017, Plant Cell.

[19]  B. Chait,et al.  Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex , 2017, eLife.

[20]  Mahdi Hejazi,et al.  Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering , 2017, Photosynthesis Research.

[21]  N. Nelson,et al.  Structure of the plant photosystem I supercomplex at 2.6 Å resolution , 2017, Nature Plants.

[22]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[23]  R. Ghirlando,et al.  Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome , 2017, Science.

[24]  D. Lamb,et al.  Structural Dynamics of the YidC:Ribosome Complex during Membrane Protein Biogenesis , 2016, Cell reports.

[25]  Mahdi Hejazi,et al.  Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes , 2016 .

[26]  Yigong Shi,et al.  Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1 , 2015, Genes & development.

[27]  David I Stuart,et al.  Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes , 2015, Nature Communications.

[28]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[29]  Guanghui Yang,et al.  Sampling the conformational space of the catalytic subunit of human γ-secretase , 2015, bioRxiv.

[30]  Sjors H. W. Scheres,et al.  The architecture of the spliceosomal U4/U6.U5 tri-snRNP , 2015, Nature.

[31]  H. Frielinghaus,et al.  KWS-1 high-resolution small-angle neutron scattering instrument at JCNS: current state , 2015 .

[32]  Dmitry Lyumkis,et al.  Likelihood-based classification of cryo-EM images using FREALIGN. , 2013, Journal of structural biology.

[33]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[34]  F. Hartl,et al.  Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase , 2011, Nature.

[35]  Z. Weng,et al.  A structure‐based benchmark for protein–protein binding affinity , 2011, Protein science : a publication of the Protein Society.

[36]  Sjors H W Scheres,et al.  Classification of structural heterogeneity by maximum-likelihood methods. , 2010, Methods in enzymology.

[37]  Kevin J. Emmett,et al.  Photosystem I - based biohybrid photoelectrochemical cells. , 2010, Bioresource technology.

[38]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[39]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[40]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[41]  J. Frank,et al.  A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. , 2006, Journal of structural biology.

[42]  A. Zouni,et al.  Extinction coefficients and critical solubilisation concentrations of photosystems I and II from Thermosynechococcus elongatus. , 2005, Biochimica et biophysica acta.

[43]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[44]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[45]  P. B. Crowley,et al.  Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. , 2003, Accounts of chemical research.

[46]  J. Rochaix,et al.  The ferredoxin docking site of photosystem I. , 2002, Biochimica et biophysica acta.

[47]  J. Erman,et al.  Yeast cytochrome c peroxidase: mechanistic studies via protein engineering. , 2002, Biochimica et biophysica acta.

[48]  G. Feher,et al.  X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. , 2002, Journal of molecular biology.

[49]  F. Drepper,et al.  The Luminal Helix l of PsaB Is Essential for Recognition of Plastocyanin or Cytochrome c 6and Fast Electron Transfer to Photosystem I in Chlamydomonas reinhardtii * , 2002, The Journal of Biological Chemistry.

[50]  P. Marone,et al.  Solution structure of a biological bimolecular electron transfer complex: characterization of the photosynthetic reaction center-cytochrome c2protein complex by small angle neutron scattering , 2000 .

[51]  P. Barth,et al.  Ferredoxin reduction by photosystem I from Synechocystis sp. PCC 6803: toward an understanding of the respective roles of subunits PsaD and PsaE in ferredoxin binding. , 1998, Biochemistry.

[52]  J. Rochaix,et al.  The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[54]  J. Kraut,et al.  Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. , 1993, Science.

[55]  H. Hatanaka,et al.  Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? , 1993, Biochimica et biophysica acta.

[56]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[57]  P. Dutton,et al.  Cytochrome c and c2 binding dynamics and electron transfer with photosynthetic reaction center protein and other integral membrane redox proteins. , 1988, Biochemistry.

[58]  Mei Li,et al.  Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex , 2019, Nature Plants.

[59]  S H W Scheres,et al.  Processing of Structurally Heterogeneous Cryo-EM Data in RELION. , 2016, Methods in enzymology.

[60]  S. Scheres,et al.  Maximum-likelihood methods in cryo-EM. Part II: application to experimental data , 2010 .

[61]  C. Kerfeld,et al.  Cyanobacterial Photosystem I lacks specificity in its interaction with cytochrome c6 electron donors , 2005, Photosynthesis Research.

[62]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[63]  P. Fromme,et al.  X-Ray Crystallographic Structure Analysis of Cyanobacterial Photosystem I at 2.5 A Resolution , 2001 .

[64]  D. Tiedea,et al.  Solution structure of a biological bimolecular electron transfer complex: characterization of the photosynthetic reaction center-cytochrome c2 protein complex by small angle neutron scattering , 2000 .

[65]  G. Tollin,et al.  A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c552 photooxidation by photosystem I particles from spinach. , 1992, European journal of biochemistry.