First molecular evidence of hybridization in endosymbiotic ciliates (Protista, Ciliophora)

Hybridization is an important evolutionary process that can fuel diversification via formation of hybrid species or can lead to fusion of previously separated lineages by forming highly diverse species complexes. We provide here the first molecular evidence of hybridization in wild populations of ciliates, a highly diverse group of free-living and symbiotic eukaryotic microbes. The impact of hybridization was studied on the model of Plagiotoma, an obligate endosymbiont of the digestive tube of earthworms, using split decomposition analyses and species networks, 2D modeling of the nuclear rRNA molecules and compensatory base change analyses as well as multidimensional morphometrics. Gene flow slowed down and eventually hampered the diversification of Lumbricus-dwelling plagiotomids, which collapsed into a single highly variable biological entity, the P. lumbrici complex. Disruption of the species boundaries was suggested also by the continuum of morphological variability in the phenotypic space. On the other hand, hybridization conspicuously increased diversity in the nuclear rDNA cistron and somewhat weakened the host structural specificity of the P. lumbrici complex, whose members colonize a variety of phylogenetically closely related anecic and epigeic earthworms. By contrast, another recorded species, P. aporrectodeae sp. n., showed no signs of introgression, no variability in the rDNA cistron, and very high host specificity. These contrasting eco-evolutionary patterns indicate that hybridization might decrease the alpha-diversity by dissolving species boundaries, weaken the structural host specificity by broadening ecological amplitudes, and increase the nuclear rDNA variability by overcoming concerted evolution within the P. lumbrici species complex.

[1]  F. Dini,et al.  Analysis of autapomorphic point mutations provides a key for the tangled taxonomic distinction of the closely related species, Euplotes crassus, E. minuta and E. vannus (Ciliophora, Euplotida). , 2022, European journal of protistology.

[2]  M. Rataj,et al.  Nuclear and Mitochondrial SSU rRNA Genes Reveal Hidden Diversity of Haptophrya Endosymbionts in Freshwater Planarians and Challenge Their Traditional Classification in Astomatia , 2022, Frontiers in Microbiology.

[3]  P. Vďačný,et al.  Putative ITS2 secondary structure model and multi‐gene phylogenies of tetrahymenids (Ciliophora, Hymenostomatia) parasitizing planarians and crayfish worms , 2022, Zoologica Scripta.

[4]  M. Rautian,et al.  Paramecium bursaria—A Complex of Five Cryptic Species: Mitochondrial DNA COI Haplotype Variation and Biogeographic Distribution , 2021, Diversity.

[5]  P. Vďačný,et al.  Multiple independent losses of cell mouth in phylogenetically distant endosymbiotic lineages of oligohymenophorean ciliates: a lesson from Clausilocola. , 2021, Molecular phylogenetics and evolution.

[6]  J. Domínguez,et al.  The disjunct distribution of relict earthworm genera clarifies the early historical biogeography of the Lumbricidae (Crassiclitellata, Annelida) , 2021, Journal of Zoological Systematics and Evolutionary Research.

[7]  Peter Vd’ačný,et al.  Diversity and Eco-Evolutionary Associations of Endosymbiotic Astome Ciliates With Their Lumbricid Earthworm Hosts , 2021, Frontiers in Microbiology.

[8]  Eric P. Nawrocki,et al.  R2DT is a framework for predicting and visualising RNA secondary structure using templates , 2021, Nature Communications.

[9]  P. Vďačný,et al.  A discovery of two new Tetrahymena species parasitizing slugs and mussels: morphology and multi-gene phylogeny of T. foissneri sp. n. and T. unionis sp. n. , 2021, Parasitology Research.

[10]  P. Vďačný,et al.  Cryptic host-driven speciation of mobilid ciliates epibiotic on freshwater planarians. , 2021, Molecular phylogenetics and evolution.

[11]  P. Vďačný,et al.  Multi-gene phylogeny of the subclass Astomatia (Protista: Ciliophora) refreshed with two rare astome ciliates from the digestive tube of endogeic earthworms , 2021, Organisms Diversity & Evolution.

[12]  P. Lavelle,et al.  Comment on “Global distribution of earthworm diversity” , 2021, Science.

[13]  OUP accepted manuscript , 2021, Zoological Journal of the Linnean Society.

[14]  P. Vďačný,et al.  Re-discovery and novel contributions to morphology and multigene phylogeny of Myxophyllum steenstrupi (Ciliophora: Pleuronematida), an obligate symbiont of terrestrial pulmonates , 2021 .

[15]  M. Röser,et al.  The Role of Hybridisation in the Making of the Species-Rich Arctic-Alpine Genus Saxifraga (Saxifragaceae) , 2020, Diversity.

[16]  M. Carine,et al.  Geographical isolation, habitat shifts and hybridisation in the diversification of the Macaronesian endemic genus Argyranthemum (Asteraceae). , 2020, The New phytologist.

[17]  P. Vďačný,et al.  Morphological versus molecular delimitation of ciliate species: a case study of the family Clevelandellidae (Protista, Ciliophora, Armophorea) , 2020 .

[18]  A. Potekhin,et al.  Paramecium Diversity and a New Member of the Paramecium aurelia Species Complex Described from Mexico , 2020 .

[19]  P. Vďačný,et al.  Delimitation of five astome ciliate species isolated from the digestive tube of three ecologically different groups of lumbricid earthworms, using the internal transcribed spacer region and the hypervariable D1/D2 region of the 28S rRNA gene , 2020, BMC Evolutionary Biology.

[20]  P. Vďačný,et al.  Multi-gene phylogeny of Tetrahymena refreshed with three new histophagous species invading freshwater planarians , 2020, Parasitology Research.

[21]  P. Vďačný,et al.  Evolutionary Origin and Host Range of Plagiotoma lumbrici (Ciliophora, Hypotrichia), an Obligate Gut Symbiont of Lumbricid Earthworms , 2020, The Journal of eukaryotic microbiology.

[22]  M. Shin,et al.  Deciphering phylogenetic relationships and delimiting species boundaries using a Bayesian coalescent approach in protists: A case study of the ciliate genus Spirostomum (Ciliophora, Heterotrichea) , 2019, Scientific Reports.

[23]  P. Vďačný,et al.  Integrative taxonomy of five astome ciliates (Ciliophora, Astomatia) isolated from earthworms in Central Europe , 2019, European Journal of Taxonomy.

[24]  Sebastian Tarcz,et al.  Global molecular variation of Paramecium jenningsi complex (Ciliophora, Protista): a starting point for further, detailed biogeography surveys , 2019, Systematics and Biodiversity.

[25]  P. Vďačný,et al.  Living morphology and molecular phylogeny of oligohymenophorean ciliates associated with freshwater turbellarians. , 2019, Diseases of aquatic organisms.

[26]  Se-Joo Kim,et al.  Utility of mitochondrial CO1 sequences for species discrimination of Spirotrichea ciliates (Protozoa, Ciliophora) , 2019, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[27]  T. Stoeck,et al.  A Proposed Timescale for the Evolution of Armophorean Ciliates: Clevelandellids Diversify More Rapidly Than Metopids , 2018, The Journal of eukaryotic microbiology.

[28]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[29]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[30]  P. Vďačný Evolutionary Associations of Endosymbiotic Ciliates Shed Light on the Timing of the Marsupial–Placental Split , 2018, Molecular biology and evolution.

[31]  K. Omland,et al.  Genomic evidence of speciation reversal in ravens , 2018, Nature Communications.

[32]  D. Lynn,et al.  Tetrahymena glochidiophila n. sp., a new species of Tetrahymena (Ciliophora) that causes mortality to glochidia larvae of freshwater mussels (Bivalvia). , 2018, Diseases of aquatic organisms.

[33]  Luay Nakhleh,et al.  Inferring Phylogenetic Networks Using PhyloNet , 2017, bioRxiv.

[34]  D. Hoksza,et al.  TRAVeLer: a tool for template-based RNA secondary structure visualization , 2017, BMC Bioinformatics.

[35]  E. Orias,et al.  Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena. , 2017, Annual review of microbiology.

[36]  D. Lynn,et al.  Diversification and Phylogenetics of Mobilid Peritrichs (Ciliophora) with Description of Urceolaria parakorschelti sp. nov. , 2017, Protist.

[37]  W. Goessler,et al.  Shifting barriers and phenotypic diversification by hybridisation. , 2017, Ecology letters.

[38]  C. Oberprieler,et al.  O R I G I N a L P a P E R , 2022 .

[39]  Dan G. Bock,et al.  Hybridization and extinction , 2016, Evolutionary applications.

[40]  Sebastian Tarcz,et al.  Paramecium jenningsi complex: existence of three cryptic species confirmed by multi-locus analysis and strain crosses , 2016 .

[41]  Zhenzhen Yi,et al.  Utility of combining morphological characters, nuclear and mitochondrial genes: An attempt to resolve the conflicts of species identification for ciliated protists. , 2016, Molecular phylogenetics and evolution.

[42]  Ziheng Yang The BPP program for species tree estimation and species delimitation , 2015 .

[43]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[44]  Matthew A. Streisfeld,et al.  Introgressive hybridization facilitates adaptive divergence in a recent radiation of monkeyflowers , 2015, Proceedings of the Royal Society B: Biological Sciences.

[45]  P. Vďačný Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene. , 2015, European journal of protistology.

[46]  T. Berendonk,et al.  New Paramecium (Ciliophora, Oligohymenophorea) congeners shape our view on its biodiversity , 2015, Organisms Diversity & Evolution.

[47]  F. Perfectti,et al.  The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants , 2015, Biodiversity and Conservation.

[48]  M. Pérez‐Losada,et al.  Underground evolution: new roots for the old tree of lumbricid earthworms. , 2015, Molecular phylogenetics and evolution.

[49]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[50]  M. Strüder-Kypke,et al.  Ciliate species diversity and host-parasitoid codiversification in Pseudocollinia infecting krill, with description of Pseudocollinia similis sp. nov. , 2014, Diseases of aquatic organisms.

[51]  N. Salamin,et al.  Hybridisation and diversification in the adaptive radiation of clownfishes , 2014, BMC Evolutionary Biology.

[52]  F. P. Doerder,et al.  Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena , 2014, BMC Evolutionary Biology.

[53]  Chad R Bernier,et al.  Secondary Structures of rRNAs from All Three Domains of Life , 2014, PloS one.

[54]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[55]  W. Foissner An update of 'basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa'. , 2014, International journal of systematic and evolutionary microbiology.

[56]  Sebastian Tarcz,et al.  Three-locus analysis in conjunction with strain crosses confirms the existence of reproductively isolated populations in Paramecium jenningsi , 2013 .

[57]  R. Fernández,et al.  Earthworms, good indicators for palaeogeographical studies? Testing the genetic structure and demographic history in the peregrine earthworm Aporrectodea trapezoides (Dugès, 1828) in southern Europe , 2013 .

[58]  D. Huson,et al.  Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. , 2012, Systematic biology.

[59]  International Commission on Zoological Nomenclatur,et al.  Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication , 2012, ZooKeys.

[60]  R. Gutell,et al.  A Comparison of the Crystal Structures of Eukaryotic and Bacterial SSU Ribosomal RNAs Reveals Common Structural Features in the Hypervariable Regions , 2012, PloS one.

[61]  M. Rautian,et al.  Variation in ribosomal and mitochondrial DNA sequences demonstrates the existence of intraspecific groups in Paramecium multimicronucleatum (Ciliophora, Oligohymenophorea). , 2012, Molecular phylogenetics and evolution.

[62]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[63]  S. Joly JML: testing hybridization from species trees , 2012, Molecular ecology resources.

[64]  M. Pérez‐Losada,et al.  An Earthworm Riddle: Systematics and Phylogeography of the Spanish Lumbricid Postandrilus , 2011, PloS one.

[65]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[66]  K. Marhold Multivariate morphometrics and its application to monography at specifi c and infraspecifi c levels , 2011 .

[67]  P. Ikonomi,et al.  Barcoding Tetrahymena: discriminating species and identifying unknowns using the cytochrome c oxidase subunit I (cox-1) barcode. , 2011, Protist.

[68]  T. Stuessy,et al.  Monographic plant systematics : fundamental assessment of plant biodiversity , 2011 .

[69]  M. Strüder-Kypke,et al.  Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker , 2010 .

[70]  A. Drummond,et al.  Bayesian Inference of Species Trees from Multilocus Data , 2009, Molecular biology and evolution.

[71]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[72]  Luay Nakhleh,et al.  PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships , 2008, BMC Bioinformatics.

[73]  P. Ikonomi,et al.  Barcoding ciliates: a comprehensive study of 75 isolates of the genus Tetrahymena. , 2007, International journal of systematic and evolutionary microbiology.

[74]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[75]  Tobias Müller,et al.  4SALE – A tool for synchronous RNA sequence and secondary structure alignment and editing , 2006, BMC Bioinformatics.

[76]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[77]  T. Berendonk,et al.  Intraspecific Genetic Variation in Paramecium Revealed by Mitochondrial Cytochrome c Oxidase I Sequences , 2006, The Journal of eukaryotic microbiology.

[78]  H. Berger Monograph of the Urostyloidea (Ciliophora, Hypotricha) , 2006 .

[79]  M. Horn,et al.  Morphological and molecular investigations of Paramecium schewiakoffi sp. nov. (Ciliophora, Oligohymenophorea) and current status of distribution and taxonomy of Paramecium spp. , 2004 .

[80]  D. Hickey,et al.  Phylogenetic Position of Species in the Genera Anoplophrya, Plagiotoma, and Nyctotheroides (Phylum Ciliophora), Endosymbiotic Ciliates of Annelids and Anurans , 2004, The Journal of eukaryotic microbiology.

[81]  O. Seehausen Hybridization and adaptive radiation. , 2004, Trends in ecology & evolution.

[82]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[83]  H. Berger Monograph of the Oxytrichidae (Ciliophora, Hypotrichia) , 2012, Monographiae Biologicae.

[84]  G. Huxel Rapid displacement of native species by invasive species: effects of hybridization , 1999 .

[85]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[86]  D. Lynn,et al.  Maximum Ages of Ciliate Lineages Estimated Using a Small Subunit rRNA Molecular Clock: Crown Eukaryotes Date Back to the Paleoproterozoic , 1997 .

[87]  H. Kuhlmann,et al.  Interspecific mating reactions between Euplotes octocarinatus and Euplotes patella syngen 2. , 1993, European journal of protistology.

[88]  P. Luporini,et al.  An integrated study of the species problem in the Euplotes crassus-minuta-vannus group , 1988 .

[89]  M. Schlegel,et al.  Characterization of Two Sibling Species of the Genus Stylonychia (Ciliata, Hypotricha): S. mytilus Ehrenberg, 1838 and S. lemnae n. sp. II. Biochemical Characterization† , 1983 .

[90]  D. L. Nanney,et al.  Characterization of the species of the Tetrahymena pyriformis complex. , 1976, Transactions of the American Microscopical Society.

[91]  L. V. Valen,et al.  Ecological Species, Multispecies, and Oaks , 1976 .

[92]  T. M. Sonneborn The Paramecium aurelia Complex of Fourteen Sibling Species , 1975 .

[93]  Renzo Nobili Coniugazione ibrida tra specie di Euplotes (Ciliata, Hypotrichida) , 1964 .

[94]  T. M. Sonneborn Paramecium aurelia: Mating Types and Groups; Lethal Interactions; Determination and Inheritance , 1939, The American Naturalist.

[95]  R. Lesson,et al.  Histoire naturelle des zoophytes. , 1843 .