Spin/orbit moment imbalance in the near-zero moment ferromagnetic semiconductor SmN

SmN is ferromagnetic below 27 K, and its net magnetic moment of 0.03 Bohr magnetons per formula unit is one of the smallest magnetisations found in any ferromagnetic material. The near-zero moment is a result of the nearly equal and opposing spin and orbital moments in the 6H5/2 ground state of the Sm3+ ion, which leads finally to a nearly complete cancellation for an ion in the SmN ferromagnetic state. Here we explore the spin alignment in this compound with X-ray magnetic circular dichroism at the Sm L2,3 edges. The spectral shapes are in qualitative agreement with computed spectra based on an LSDA+U (local spin density approximation with Hubbard-U corrections) band structure, though there remain differences in detail which we associate with the anomalous branching ratio in rare-earth L edges. The sign of the spectra determine that in a magnetic field the Sm 4f spin moment aligns antiparallel to the field; the very small residual moment in ferromagnetic SmN aligns with the 4f orbital moment and antiparallel to the spin moment. Further measurements on very thin (1.5 nm) SmN layers embedded in GdN show the opposite alignment due to a strong Gd-Sm exchange, suggesting that the SmN moment might be further reduced by about 0.5 % Gd substitution.

[1]  M. Schilfgaarde,et al.  Electronic structure of EuN: Growth, spectroscopy, and theory , 2011 .

[2]  Lin He Zero-magnetization ferromagnet induced by hydrogenation , 2011 .

[3]  J. Cezar,et al.  Magnetic state of EuN: X-ray magnetic circular dichroism at the EuM4,5andL2,3absorption edges , 2011 .

[4]  A. Nigam,et al.  Observation of spin-orbital compensation in Sm1−xGdxNi2 , 2011 .

[5]  A. Smekhova,et al.  Using a zero-magnetization ferromagnet as the pinning layer in exchange-bias systems , 2010 .

[6]  E. Snoeck,et al.  Long range spin ferromagnetic order with zero magnetization in (111)Sm1−xGdxAl2 films , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  H. Trodahl,et al.  Near-zero-moment ferromagnetism in the semiconductor SmN , 2008, 0804.1595.

[8]  H. Trodahl,et al.  Comparison between experiment and calculated band structures for DyN and SmN , 2007, cond-mat/0703740.

[9]  Walter R. L. Lambrecht,et al.  Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry , 2007 .

[10]  A. Yaresko,et al.  Electronic structure and x-ray magnetic circular dichroism in the Heusler alloy Co2MnGe , 2006 .

[11]  K. Asakura,et al.  X-ray magnetic circular dichroism at rare-earth L23 absorption edges in various compounds and alloys , 2006 .

[12]  H. Trodahl,et al.  Semiconducting ground state of GdN thin films , 2006 .

[13]  E. Dartyge,et al.  X-ray magnetic circular dichroism at the Gd L 2 , 3 absorption edges in GdN layers: The influence of lattice expansion , 2006 .

[14]  K. Fauth,et al.  GdN thin films: Bulk and local electronic and magnetic properties , 2005 .

[15]  A. Tanaka,et al.  Direct evidence of ferromagnetism without net magnetization observed by x-ray magnetic circular dichroism , 2004 .

[16]  P. Strange,et al.  Half-metallic to insulating behavior of rare-earth nitrides , 2004 .

[17]  P. Fulde,et al.  Localized U 5f electrons in UPd3 from LDA+U calculations , 2003 .

[18]  H. Kawata,et al.  Zero-magnetization ferromagnet proven by helicity-switching Compton scattering. , 2001, Physical review letters.

[19]  H. Adachi,et al.  A ferromagnet having no net magnetic moment , 1999, Nature.

[20]  H. Ino,et al.  SEPARATION OF THE 4F-SPIN, 4F-ORBITAL, AND CONDUCTION-ELECTRON MAGNETIZATION FROM EXOTIC THERMOMAGNETIC BEHAVIOR FOR FERROMAGNETIC SM INTERMETALLICS , 1999 .

[21]  Kiyoyuki Terakura,et al.  Is Hund's Second Rule Responsible for the Orbital Magnetism in Solids? , 1998 .

[22]  A. Kotani,et al.  Roles of 4 f-5 d Exchange Interactions in Magnetic Circular X-Ray Dichroism at the Rare-Earth L 2,3 Edges , 1997 .

[23]  M. Veenendaal,et al.  Branching Ratios of the Circular Dichroism at Rare Earth L 23 Edges , 1997 .

[24]  A. Yaresko,et al.  Calculation of the magneto-optical properties of ferromagnetic metals using the spin-polarized relativistic LMTO method , 1995 .

[25]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[26]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[27]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[28]  R. M. Moon,et al.  Magnetic properties of SmN , 1979 .

[29]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[30]  F. K. Richtmyer,et al.  The Widths of the L-Series Lines and of the Energy Levels of Au(79) , 1934 .

[31]  K. Mattenberger,et al.  Chapter 114 Magnetic measurements on rare earth and actinide monopnictides and monochalcogenides , 1993 .

[32]  J. Inglesfield,et al.  Unoccupied Electronic States , 1992 .

[33]  F. Hulliger Chapter 33 Rare earth pnictides , 1979 .