Estimation of Linear Regression with the Dimensional Analysis Method

Dimensional Analysis (DA) is a mathematical method that manipulates the data to be analyzed in a homogenized manner. Likewise, linear regression is a potent method for analyzing data in diverse fields. At the same time, data visualization has gained attention in tendency study. In addition, linear regression is an important topic to address predictive models and patterns in data study. However, it is still pending to attack the manipulation of uncertainty related to the data transformation. In this sense, this work presents a new contribution with linear regression, combining the Dimensional Analysis (DA) to address instability and error issues. In addition, our method provides a second contribution related to including the decision maker’s attitude involved in the study. Therefore, the experimentation shows that DA manipulates the regression problem under a complex situation that the outcome may have in the investigation. A real-life case study is used to demonstrate our proposal.

[1]  I. Száva,et al.  Experimental Validation of Model Heat Transfer in Rectangular Hole Beams Using Modern Dimensional Analysis , 2022, Mathematics.

[2]  Hermann Jahnke,et al.  Distributional Regression for Demand Forecasting in e-grocery , 2019, Eur. J. Oper. Res..

[3]  Burkay Genç,et al.  A column generation based heuristic algorithm for piecewise linear regression , 2021, Expert Syst. Appl..

[4]  Benjamin Wilkinson,et al.  Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes , 2020, Comput. Electron. Agric..

[5]  Martijn R.K. Mes,et al.  Forecasting demand profiles of new products , 2020, Decis. Support Syst..

[6]  K. Haerling,et al.  Making Sense of Methods and Measurements: Simple Linear Regression , 2020 .

[7]  Argyrios Syntetos,et al.  A compound-Poisson Bayesian approach for spare parts inventory forecasting , 2020 .

[8]  Mingyao Ai,et al.  Optimal designs for panel data linear regressions , 2020 .

[9]  Y. Ge,et al.  Using multiple linear regression and random forests to identify spatial poverty determinants in rural China , 2020 .

[10]  Nikolaos Kourentzes,et al.  Optimising Forecasting Models for Inventory Planning , 2019, International Journal of Production Economics.

[11]  Siddhaling Urolagin,et al.  Sales Prediction Using Linear and KNN Regression , 2020 .

[12]  Pradip Kumar Ray,et al.  Modelling and analysis of inventory management systems in healthcare: A review and reflections , 2019, Comput. Ind. Eng..

[13]  Dennis K. J. Lin,et al.  Statistical Theories for Dimensional Analysis , 2019, Statistica Sinica.

[14]  Ronald E. McRoberts,et al.  Harmonic regression of Landsat time series for modeling attributes from national forest inventory data , 2018 .

[15]  Virpi Junttila,et al.  Bayesian principal component regression model with spatial effects for forest inventory variables under small field sample size. , 2016, 1605.07439.

[16]  Hongseok Kim,et al.  Deep neural network based demand side short term load forecasting , 2016, 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[17]  Dennis K. J. Lin,et al.  Dimensional Analysis and Its Applications in Statistics , 2014 .

[18]  Christopher J. Nachtsheim,et al.  Experimental Design for Engineering Dimensional Analysis , 2013, Technometrics.

[19]  M. Seifbarghy,et al.  Linear and nonlinear estimation of the cost function of a two-echelon inventory system , 2013 .

[20]  Ruud H. Teunter,et al.  Review of inventory systems with deterioration since 2001 , 2012, Eur. J. Oper. Res..

[21]  Ioannis Mallidis,et al.  Operations Research for green logistics - An overview of aspects, issues, contributions and challenges , 2011, Eur. J. Oper. Res..

[22]  Ali Elkamel,et al.  Model order reduction using neural network principal component analysis and generalized dimensional analysis , 2008 .

[23]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[24]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[25]  John E. Boylan,et al.  An examination of the size of orders from customers, their characterisation and the implications for inventory control of slow moving items , 2003, J. Oper. Res. Soc..

[26]  R. Butterfield,et al.  Dimensional analysis for geotechnical engineers , 1999 .

[27]  J. R. Cook,et al.  Simulation-Extrapolation Estimation in Parametric Measurement Error Models , 1994 .

[28]  H. Georgi Generalized dimensional analysis , 1992, hep-ph/9207278.

[29]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[30]  J. Nash New Developments in Statistical Computing , 1986 .

[31]  S. A. Conrad,et al.  Sales Data and the Estimation of Demand , 1976 .

[32]  E. S. Pearson,et al.  TESTS FOR RANK CORRELATION COEFFICIENTS. I , 1957 .

[33]  J. Tukey Comparing individual means in the analysis of variance. , 1949, Biometrics.